Complexity of constraint satisfaction problems

By: Material type: TextTextPublication details: IST Austria 2017Online resources:
Contents:
Acknowledgments
Abstract
1 Introduction
2 Complexity of valued CSP
3 Generalizing Edmonds' algorithm
A Appendices
Summary: An instance of the Constraint Satisfaction Problem (CSP) is given by a finite set of variables, a finite domain of labels, and a set of constraints, each constraint acting on a subset of the variables. The goal is to find an assignment of labels to its variables that satisfies all constraints (or decide whether one exists). If we allow more general “soft” constraints, which come with (possibly infinite) costs of particular assignments, we obtain instances from a richer class called Valued Constraint Satisfaction Problem (VCSP). There the goal is to find an assignment with minimum total cost. In this thesis, we focus (assuming that P 6 = NP) on classifying computational com- plexity of CSPs and VCSPs under certain restricting conditions. Two results are the core content of the work. In one of them, we consider VCSPs parametrized by a constraint language, that is the set of “soft” constraints allowed to form the instances, and finish the complexity classification modulo (missing pieces of) complexity classification for analogously parametrized CSP. The other result is a generalization of Edmonds’ perfect matching algorithm. This generalization contributes to complexity classfications in two ways. First, it gives a new (largest known) polynomial-time solvable class of Boolean CSPs in which every variable may appear in at most two constraints and second, it settles full classification of Boolean CSPs with planar drawing (again parametrized by a constraint language).
List(s) this item appears in: ISTA Thesis
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Book Book Library Quiet Room (Browse shelf(Opens below)) Available AT-ISTA#001356
Total holds: 0

Thesis

Acknowledgments

Abstract

1 Introduction

2 Complexity of valued CSP

3 Generalizing Edmonds' algorithm

A Appendices

An instance of the Constraint Satisfaction Problem (CSP) is given by a finite set of
variables, a finite domain of labels, and a set of constraints, each constraint acting on
a subset of the variables. The goal is to find an assignment of labels to its variables
that satisfies all constraints (or decide whether one exists). If we allow more general
“soft” constraints, which come with (possibly infinite) costs of particular assignments,
we obtain instances from a richer class called Valued Constraint Satisfaction Problem
(VCSP). There the goal is to find an assignment with minimum total cost.
In this thesis, we focus (assuming that P
6
=
NP) on classifying computational com-
plexity of CSPs and VCSPs under certain restricting conditions. Two results are the core
content of the work. In one of them, we consider VCSPs parametrized by a constraint
language, that is the set of “soft” constraints allowed to form the instances, and finish
the complexity classification modulo (missing pieces of) complexity classification for
analogously parametrized CSP. The other result is a generalization of Edmonds’ perfect
matching algorithm. This generalization contributes to complexity classfications in two
ways. First, it gives a new (largest known) polynomial-time solvable class of Boolean
CSPs in which every variable may appear in at most two constraints and second, it
settles full classification of Boolean CSPs with planar drawing (again parametrized by a
constraint language).

Powered by Koha