Amazon cover image
Image from Amazon.com

Hypernumbers and Extrafunctions [electronic resource] : Extending the Classical Calculus / by Mark Burgin.

By: Contributor(s): Material type: TextTextSeries: SpringerBriefs in MathematicsPublisher: New York, NY : Springer New York : Imprint: Springer, 2012Description: VII, 160 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781441998750
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 515 23
LOC classification:
  • QA299.6-433
Online resources:
Contents:
-1. Introduction: How mathematicians solve ”unsolvable” problems.-2.  Hypernumbers(Definitions and typology,Algebraic properties,Topological properties).-3. Extrafunctions(Definitions and typology, Algebraic properties, Topological properties).-4.  How to differentiate any real function (Approximations, Hyperdifferentiation).-5. How to integrate any continuous real function (Partitions and covers, Hyperintegration over finite intervals, Hyperintegration over infinite intervals). -6. Conclusion: New opportunities -- Appendix -- References.
In: Springer eBooksSummary: “Hypernumbers and Extrafunctions” presents a rigorous mathematical approach to operate with infinite values. First, concepts of real and complex numbers are expanded to include a new universe of numbers called hypernumbers which includes infinite quantities. This brief extends classical calculus based on real functions by introducing extrafunctions, which generalize not only the concept of a conventional function but also the concept of a distribution. Extrafucntions have been also efficiently used for a rigorous mathematical definition of the Feynman path integral, as well as for solving some problems in probability theory, which is also important for contemporary physics. This book introduces a new theory that includes the theory of distributions as a subtheory, providing more powerful tools for mathematics and its applications. Specifically, it makes it possible to solve PDE for which it is proved that they do not have solutions  in distributions. Also illustrated in this text is how this new theory allows the differentiation and integration of any real function. This text can be used for enhancing traditional courses of calculus for undergraduates, as well as for teaching a separate course for graduate students.
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library EBook Available
Total holds: 0

-1. Introduction: How mathematicians solve ”unsolvable” problems.-2.  Hypernumbers(Definitions and typology,Algebraic properties,Topological properties).-3. Extrafunctions(Definitions and typology, Algebraic properties, Topological properties).-4.  How to differentiate any real function (Approximations, Hyperdifferentiation).-5. How to integrate any continuous real function (Partitions and covers, Hyperintegration over finite intervals, Hyperintegration over infinite intervals). -6. Conclusion: New opportunities -- Appendix -- References.

“Hypernumbers and Extrafunctions” presents a rigorous mathematical approach to operate with infinite values. First, concepts of real and complex numbers are expanded to include a new universe of numbers called hypernumbers which includes infinite quantities. This brief extends classical calculus based on real functions by introducing extrafunctions, which generalize not only the concept of a conventional function but also the concept of a distribution. Extrafucntions have been also efficiently used for a rigorous mathematical definition of the Feynman path integral, as well as for solving some problems in probability theory, which is also important for contemporary physics. This book introduces a new theory that includes the theory of distributions as a subtheory, providing more powerful tools for mathematics and its applications. Specifically, it makes it possible to solve PDE for which it is proved that they do not have solutions  in distributions. Also illustrated in this text is how this new theory allows the differentiation and integration of any real function. This text can be used for enhancing traditional courses of calculus for undergraduates, as well as for teaching a separate course for graduate students.

Powered by Koha