Critical Point Theory for Lagrangian Systems [electronic resource] / by Marco Mazzucchelli.
Material type:
TextSeries: Progress in Mathematics ; 293Publisher: Basel : Springer Basel, 2012Description: XII, 188 p. online resourceContent type: - text
- computer
- online resource
- 9783034801638
- 530.15 23
- QA401-425
- QC19.2-20.85
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
|---|---|---|---|---|---|---|---|---|
eBook
|
e-Library | EBook | Available |
1 Lagrangian and Hamiltonian systems -- 2 Functional setting for the Lagrangian action -- 3 Discretizations -- 4 Local homology and Hilbert subspaces -- 5 Periodic orbits of Tonelli Lagrangian systems -- A An overview of Morse theory.-Bibliography -- List of symbols -- Index.
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.