Amazon cover image
Image from Amazon.com

Singularity theory for non-twist KAM tori / [electronic resource] A. González-Enríquez, A. Haro, R. de la Llave.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical Society ; v. 1067Publisher: Providence, Rhode Island : American Mathematical Society, [2013]Copyright date: ©2013Description: 1 online resource (vi, 115 pages : illustrations)Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9781470414283 (online)
Subject(s): Additional physical formats: Singularity theory for non-twist KAM tori /DDC classification:
  • 515/.39 23
LOC classification:
  • QA380 .G66 2013
Online resources:
Contents:
Chapter 1. Introduction Chapter 2. Preliminaries Chapter 3. Geometric properties of an invariant torus Chapter 4. Geometric properties of fibered Lagrangian deformations Chapter 5. Nondegeneracy on a KAM procedure with fixed frequency Chapter 6. A KAM theorem for symplectic deformations Chapter 7. A Transformed Tori Theorem Chapter 8. Bifurcation theory for KAM tori Chapter 9. The close-to-integrable case Appendix A. Hamiltonian vector fields Appendix B. Elements of singularity theory
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library EBook Available
Total holds: 0

"January 2014, volume 227, number 1067 (third of 4 numbers)"--Title page.

Includes bibliographical references (pages 111-115).

Chapter 1. Introduction Chapter 2. Preliminaries Chapter 3. Geometric properties of an invariant torus Chapter 4. Geometric properties of fibered Lagrangian deformations Chapter 5. Nondegeneracy on a KAM procedure with fixed frequency Chapter 6. A KAM theorem for symplectic deformations Chapter 7. A Transformed Tori Theorem Chapter 8. Bifurcation theory for KAM tori Chapter 9. The close-to-integrable case Appendix A. Hamiltonian vector fields Appendix B. Elements of singularity theory

Access is restricted to licensed institutions

Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2014

Mode of access : World Wide Web

Description based on print version record.

Powered by Koha