Amazon cover image
Image from Amazon.com

On $K_*(Z/n)$ and $K_*(F_q[t]/(t^2)$ / [electronic resource] Janet E. Aisbett, Emilio Lluis-Puebla, and Victor Snaith ; with an appendix by Christophe Soulé.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical Society ; v. 329Publication details: Providence, R.I., U.S.A. : American Mathematical Society, 1985.Description: 1 online resource (vi, 200 p.)ISBN:
  • 9781470407421 (online)
Subject(s): Additional physical formats: On $K_*(Z/n)$ and $K_*(F_q[t]/(t^2)$ /DDC classification:
  • 510 s 512/.55 19
LOC classification:
  • QA3 .A57 no. 329 QA612.33
Online resources:
Contents:
On $K_3(Z/p^n)$ and $K_4(Z/p^n)$ (Janet E. Aisbett) On $K_3(\mathbb {F}_{p^\ell }[t]/(t^2))$ and $K_3(Z/9)$, $p$ an odd prime (Emilio Lluis-Puebla) On $K_3$ of dual numbers (Victor Snaith) Appendix. Homological stability of the Steinberg group over the integers (C. Soulé)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
eBook eBook e-Library Available
Total holds: 0

Includes bibliographical references.

On $K_3(Z/p^n)$ and $K_4(Z/p^n)$ (Janet E. Aisbett) On $K_3(\mathbb {F}_{p^\ell }[t]/(t^2))$ and $K_3(Z/9)$, $p$ an odd prime (Emilio Lluis-Puebla) On $K_3$ of dual numbers (Victor Snaith) Appendix. Homological stability of the Steinberg group over the integers (C. Soulé)

Access is restricted to licensed institutions

Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2012

Mode of access : World Wide Web

Description based on print version record.

Powered by Koha