On $K_*(Z/n)$ and $K_*(F_q[t]/(t^2)$ / [electronic resource] Janet E. Aisbett, Emilio Lluis-Puebla, and Victor Snaith ; with an appendix by Christophe Soulé.
Material type:
TextSeries: Memoirs of the American Mathematical Society ; v. 329Publication details: Providence, R.I., U.S.A. : American Mathematical Society, 1985.Description: 1 online resource (vi, 200 p.)ISBN: - 9781470407421 (online)
- 510 s 512/.55 19
- QA3 .A57 no. 329 QA612.33
| Item type | Current library | Call number | Status | Date due | Barcode | Item holds | |
|---|---|---|---|---|---|---|---|
eBook
|
e-Library | Available |
Includes bibliographical references.
On $K_3(Z/p^n)$ and $K_4(Z/p^n)$ (Janet E. Aisbett) On $K_3(\mathbb {F}_{p^\ell }[t]/(t^2))$ and $K_3(Z/9)$, $p$ an odd prime (Emilio Lluis-Puebla) On $K_3$ of dual numbers (Victor Snaith) Appendix. Homological stability of the Steinberg group over the integers (C. Soulé)
Access is restricted to licensed institutions
Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2012
Mode of access : World Wide Web
Description based on print version record.