Asymptotic analysis from theory to application / edited by F. Verhulst.
Material type:
TextSeries: Lecture notes in mathematics (Springer-Verlag) ; 711.Publication details: Berlin ; New York : Springer-Verlag, 1979.Description: 1 online resource (240 pages) : illustrationsContent type: - text
- computer
- online resource
- 9783540353324
- 3540353321
- Differential equations -- Asymptotic theory
- Perturbation (Mathematics)
- Équations différentielles -- Théorie asymptotique
- Perturbation (Mathématiques)
- Ecuaciones diferenciales -- Teoría asintótica
- Perturbación (Matemáticas)
- Differential equations -- Asymptotic theory
- Perturbation (Mathematics)
- Analysis
- Asymptotische Methode
- Asymptotic expansions
- Stability
- 515.35 22
- QA3 .L28 no. 711 QA372
- 34Exx
- SI 850
- digitized 2010 HathiTrust Digital Library committed to preserve
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
|---|---|---|---|---|---|---|---|---|
eBook
|
e-Library | eBook LN Mathematic | Available |
Includes bibliographical references and index.
Use copy Restrictions unspecified star MiAaHDL
Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2010. MiAaHDL
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. MiAaHDL
http://purl.oclc.org/DLF/benchrepro0212
digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL
Print version record.
On matching principles -- Singular perturbations of spectra -- Feed-back control of singularly perturbed heating problems -- Singular perturbation methods in a one-dimensional free boundary problem -- Bifurcation analysis of a non linear free boundary problem from plasma physics -- Asymptotic approximations in magneto-hydrcdynamic singular perturbation problems -- Boundary layers in large scale ocean circulation -- Asymptotic methods for the Volterra-Lotka equations -- Small random perturbations of dynamical systems with applications in population genetics -- The description of jumps between Kepler orbits by boundary layer methods -- The 1:2:1-resonance, its periodic orbits and integrals -- Approximations of higher order resonances with an application to Contopoulos' model problem -- On the asymptotic validity of perturbation methods for hyperbolic differential equations.