Amazon cover image
Image from Amazon.com

High-dimensional nonlinear diffusion stochastic processes [electronic resource] : modelling for engineering applications / Yevgeny Mamontov, Magnus Willander.

By: Contributor(s): Material type: TextTextSeries: Series on advances in mathematics for applied sciences ; v. 56.Publication details: Singapore ; River Edge, NJ : World Scientific, 2001.Description: 1 online resource (xviii, 297 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789812810540
  • 9812810544
Subject(s): Genre/Form: Additional physical formats: Print version:: High-dimensional nonlinear diffusion stochastic processes.DDC classification:
  • 620/.001/5118 22
LOC classification:
  • TA342 .M35 2001eb
Online resources:
Contents:
Preface; Contents; Chapter 1 Introductory Chapter; 1.1 Prerequisites for Reading; 1.2 Random Variable. Stochastic Process. Random Field. High-Dimensional Process. One-Point Process; 1.3 Two-Point Process. Expectation. Markov Process. Example of Non-Markov Process Associated with Multidimensional Markov Process; 1.4 Preceding Subsequent and Transition Probability Densities. The Chapman-Kolmogorov Equation. Initial Condition for Markov Process; 1.4.1 The Chapman-Kolmogorov equation; 1.4.2 Initial condition for Markov process.
1.5 Homogeneous Markov Process. Example of Markov Process: The Wiener Process1.6 Expectation Variance and Standard Deviations of Markov Process; 1.7 Invariant and Stationary Markov Processes. Covariance. Spectral Densities; 1.8 Diffusion Process; 1.9 Example of Diffusion Processes: Solutions of Ito's Stochastic Ordinary Differential Equation; 1.10 The Kolmogorov Backward Equation; 1.11 Figures of Merit. Diffusion Modelling of High-Dimensional Systems; 1.12 Common Analytical Techniques to Determine Probability Densities of Diffusion Processes. The Kolmogorov Forward Equation.
1.12.1 Probability density1.12.2 Invariant probability density; 1.12.3 Stationary probability density; 1.13 The Purpose and Content of This Book; Chapter 2 Diffusion Processes; 2.1 Introduction; 2.2 Time-Derivatives of Expectation and Variance; 2.3 Ordinary Differential Equation Systems for Expectation; 2.3.1 The first-order system; 2.3.2 The second-order system; 2.3.3 Systems of the higher orders; 2.4 Models for Noise-Induced Phenomena in Expectation; 2.4.1 The case of stochastic resonance; 2.4.2 Practically efficient implementation of the second-order system.
2.5 Ordinary Differential Equation System for Variance2.5.1 Damping matrix; 2.5.2 The uncorrelated-matrixes approximation; 2.5.3 Nonlinearity of the drift function; 2.5.4 Fundamental limitation of the state-space-independent approximations for the diffusion and damping matrixes; 2.6 The Steady-State Approximation for The Probability Density; Chapter 3 Invariant Diffusion Processes; 3.1 Introduction; 3.2 Preliminary Remarks; 3.3 Expectation. The Finite-Equation Method; 3.4 Explicit Expression for Variance; 3.5 The Simplified Detailed-Balance Approximation for Invariant Probability Density.
3.5.1 Partial differential equation for logarithm of the density3.5.2 Truncated equation for the logarithm and the detailed-balance equation; 3.5.3 Case of the detailed balance; 3.5.4 The detailed-balance approximation; 3.5.5 The simplified detailed-balance approximation. Theorem on the approximating density; 3.6 Analytical-Numerical Approach to Non-Invariant and Invariant Diffusion Processes; 3.6.1 Choice of the bounded domain of the integration; 3.6.2 Evaluation of the multifold integrals. The Monte Carlo technique; 3.6.3 Summary of the approach; 3.7 Discussion.
Summary: Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations. The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided.
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library EBSCO Mathematics Available
Total holds: 0

Includes bibliographical references (and index.

Print version record.

Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations. The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided.

Preface; Contents; Chapter 1 Introductory Chapter; 1.1 Prerequisites for Reading; 1.2 Random Variable. Stochastic Process. Random Field. High-Dimensional Process. One-Point Process; 1.3 Two-Point Process. Expectation. Markov Process. Example of Non-Markov Process Associated with Multidimensional Markov Process; 1.4 Preceding Subsequent and Transition Probability Densities. The Chapman-Kolmogorov Equation. Initial Condition for Markov Process; 1.4.1 The Chapman-Kolmogorov equation; 1.4.2 Initial condition for Markov process.

1.5 Homogeneous Markov Process. Example of Markov Process: The Wiener Process1.6 Expectation Variance and Standard Deviations of Markov Process; 1.7 Invariant and Stationary Markov Processes. Covariance. Spectral Densities; 1.8 Diffusion Process; 1.9 Example of Diffusion Processes: Solutions of Ito's Stochastic Ordinary Differential Equation; 1.10 The Kolmogorov Backward Equation; 1.11 Figures of Merit. Diffusion Modelling of High-Dimensional Systems; 1.12 Common Analytical Techniques to Determine Probability Densities of Diffusion Processes. The Kolmogorov Forward Equation.

1.12.1 Probability density1.12.2 Invariant probability density; 1.12.3 Stationary probability density; 1.13 The Purpose and Content of This Book; Chapter 2 Diffusion Processes; 2.1 Introduction; 2.2 Time-Derivatives of Expectation and Variance; 2.3 Ordinary Differential Equation Systems for Expectation; 2.3.1 The first-order system; 2.3.2 The second-order system; 2.3.3 Systems of the higher orders; 2.4 Models for Noise-Induced Phenomena in Expectation; 2.4.1 The case of stochastic resonance; 2.4.2 Practically efficient implementation of the second-order system.

2.5 Ordinary Differential Equation System for Variance2.5.1 Damping matrix; 2.5.2 The uncorrelated-matrixes approximation; 2.5.3 Nonlinearity of the drift function; 2.5.4 Fundamental limitation of the state-space-independent approximations for the diffusion and damping matrixes; 2.6 The Steady-State Approximation for The Probability Density; Chapter 3 Invariant Diffusion Processes; 3.1 Introduction; 3.2 Preliminary Remarks; 3.3 Expectation. The Finite-Equation Method; 3.4 Explicit Expression for Variance; 3.5 The Simplified Detailed-Balance Approximation for Invariant Probability Density.

3.5.1 Partial differential equation for logarithm of the density3.5.2 Truncated equation for the logarithm and the detailed-balance equation; 3.5.3 Case of the detailed balance; 3.5.4 The detailed-balance approximation; 3.5.5 The simplified detailed-balance approximation. Theorem on the approximating density; 3.6 Analytical-Numerical Approach to Non-Invariant and Invariant Diffusion Processes; 3.6.1 Choice of the bounded domain of the integration; 3.6.2 Evaluation of the multifold integrals. The Monte Carlo technique; 3.6.3 Summary of the approach; 3.7 Discussion.

Powered by Koha