Amazon cover image
Image from Amazon.com

Nonequilibrium many-body theory of quantum systems [electronic resource] : a modern introduction / Gianluca Stefanucci, University of Rome Tor Vergata, Italy, Robert van Leeuwen, University of Jyväskylä, Finland.

By: Contributor(s): Material type: TextTextPublication details: Cambridge : Cambridge University Press, 2013.Description: 1 online resource (xvii, 600 p.) : illISBN:
  • 9781107341203 (electronic bk.)
  • 1107341205 (electronic bk.)
Subject(s): Genre/Form: Additional physical formats: Print version:: Nonequilibrium many-body theory of quantum systems.DDC classification:
  • 530.1/5353 23
LOC classification:
  • QC174.17.G68 S74 2013eb
Other classification:
  • SCI055000
  • 33.71
  • 33.26
Online resources:
Contents:
Machine generated contents note: Preface; 1. Second quantization; 2. Getting familiar with second quantization: model Hamiltonians; 3. Time-dependent problems and equations of motion; 4. The contour idea; 5. Many-particle Green's functions; 6. One-particle Green's function; 7. Mean field approximations; 8. Conserving approximations: two-particle Green's function; 9. Conserving approximations: self-energy; 10. MBPT for the Green's function; 11. MBPT and variational principles for the grand potential; 12. MBPT for the two-particle Green's function; 13. Applications of MBPT to equilibrium problems; 14. Linear response theory: preliminaries; 15. Linear response theory: many-body formulation; 16. Applications of MBPT to nonequilibrium problems; Appendices; Index.
Summary: "The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics"-- Provided by publisher.
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library EBSCO Science Available
Total holds: 0

"The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics"-- Provided by publisher.

Includes bibliographical references and index.

Machine generated contents note: Preface; 1. Second quantization; 2. Getting familiar with second quantization: model Hamiltonians; 3. Time-dependent problems and equations of motion; 4. The contour idea; 5. Many-particle Green's functions; 6. One-particle Green's function; 7. Mean field approximations; 8. Conserving approximations: two-particle Green's function; 9. Conserving approximations: self-energy; 10. MBPT for the Green's function; 11. MBPT and variational principles for the grand potential; 12. MBPT for the two-particle Green's function; 13. Applications of MBPT to equilibrium problems; 14. Linear response theory: preliminaries; 15. Linear response theory: many-body formulation; 16. Applications of MBPT to nonequilibrium problems; Appendices; Index.

Description based on print version record.

Powered by Koha