Amazon cover image
Image from Amazon.com

Discrete oscillator design : linear, nonlinear, transient, and noise domains / Randall W. Rhea.

By: Material type: TextTextSeries: Artech House microwave libraryPublication details: Norwood, MA : Artech House, ©2010.Description: 1 online resource (xvi, 450 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781608070480
  • 1608070484
Subject(s): Genre/Form: Additional physical formats: Print version:: Discrete oscillator design.DDC classification:
  • 621.381533 22
LOC classification:
  • TK7872 .R54 2010
Online resources:
Contents:
1. Linear Techniques -- 1.1. Open-Loop Method -- 1.2. Starting Conditions -- 1.3. Random Resonator and Amplifier Combination -- 1.4. Naming Conventions -- 1.5. Amplifiers for Sustaining Stages -- 1.6. Resonators -- 1.6.1. R-C Phase Shift Network -- 1.6.2. Delay-Line Phase. Shift Network -- 1.7. One-Port Method -- 1.8. Analyzing Existing Oscillators -- 1.9. Optimizing the Design -- 1.10. Statistical Analysis -- 1.11. Summary
2. Nonlinear Techniques -- 2.1. Introduction -- 2.2. Harmonic Balance Overview -- 2.3. Nonlinear Amplifiers -- 2.4. Nonlinear Open-Loop Cascade -- 2.5. Nonlinear HB Colpitts Example -- 2.6. Nonlinear Negative-Resistance Oscillator -- 2.7. Output Coupling -- 2.8. Passive Level Control -- 2.9. Supply Pushing -- 2.10. Spurious Modes -- 2.11. Ultimate Test
3. Transient Techniques -- 3.1. Introduction -- 3.2. Starting Modes -- 3.3. Starting Basic Example -- 3.4. Simulation Techniques -- 3.5. Second Starting Example -- 3.6. Starting Case Study -- 3.7. Triggering -- 3.8. Simulation Techniques for High Loaded Q -- 3.9. Steady-State Oscillator Waveforms -- 3.10. Waveform Derived Output Spectrum
4. Noise -- 4.1. Definitions -- 4.2. Predicting Phase Noise -- 4.3. Measuring Phase Noise -- 4.4. Designing for Low Phase Noise -- 4.5. Nonlinear Noise Simulation -- 4.6. PLL Noise
5. General-Purpose Oscillators -- 5.1. Comments on the Examples -- 5.2. Oscillators Without Resonators -- 5.3. L-C Oscillators -- 5.4. Oscillator Topology Selection
6. Distributed Oscillators -- 6.1. Resonator Technologies -- 6.2. Lumped and Distributed Equivalents -- 6.3. Quarter-Wavelength Resonators -- 6.4. Distributed Oscillator Examples -- 6.5. DRO Oscillators
7. Tuned Oscillators -- 7.1. Resonator Tuning Bandwidth -- 7.2. Resonator Voltage -- 7.3. Permeability Tuning -- 7.4. Tunable Oscillator Examples -- 7.5. YIG Oscillators
8. Piezoelectric Oscillators -- 8.1. Bulk Quartz Resonators -- 8.2. Fundamental Mode Crystal Oscillators -- 8.3. Overtone Mode Crystal Oscillators -- 8.4. Crystal Oscillator Examples Summary -- 8.5. Oscillator with Frequency Multiplier -- 8.6. Crystal Oscillator Starting -- 8.7. Surface Acoustic Wave Resonators -- 8.8. SAW Oscillators -- 8.9. Piezoelectric Ceramic Resonators -- 8.10. MEMS and FBAR Resonators
Appendix A. Modeling -- A.1. Capacitors -- A.2. Varactors -- A.3. Inductors -- A.4. Helical Transmission Lines -- A.5. Signal Control Devices -- A.6. Characteristic Impedance of Transmission Lines -- A.7. Helical Resonators -- Appendix B. Device Biasing -- B.1. Biasing Bipolar Transistors -- B.2. FET Bias Networks -- B.3. Bias 19 MMIC Gain Block.
Review: "Written by a recognized expert in the field, this authoritative one-stop resource covers the practical design of high-frequency oscillators with lumped, distributed, dielectric, and piezoelectric resonators. Including numerous examples, the book details important linear, nonlinear harmonic balance, transient, and noise analysis techniques. Moreover, the book shows engineers how to apply these techniques to a wide range of oscillators. Professionals gain the knowledge needed to create unique designs that elegantly match their specification needs. Over 350 illustrations and more than 200 equations support key topics throughout the book."--Jacket
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library EBSCO Technology Available
Total holds: 0

Includes bibliographical references and index.

1. Linear Techniques -- 1.1. Open-Loop Method -- 1.2. Starting Conditions -- 1.3. Random Resonator and Amplifier Combination -- 1.4. Naming Conventions -- 1.5. Amplifiers for Sustaining Stages -- 1.6. Resonators -- 1.6.1. R-C Phase Shift Network -- 1.6.2. Delay-Line Phase. Shift Network -- 1.7. One-Port Method -- 1.8. Analyzing Existing Oscillators -- 1.9. Optimizing the Design -- 1.10. Statistical Analysis -- 1.11. Summary

2. Nonlinear Techniques -- 2.1. Introduction -- 2.2. Harmonic Balance Overview -- 2.3. Nonlinear Amplifiers -- 2.4. Nonlinear Open-Loop Cascade -- 2.5. Nonlinear HB Colpitts Example -- 2.6. Nonlinear Negative-Resistance Oscillator -- 2.7. Output Coupling -- 2.8. Passive Level Control -- 2.9. Supply Pushing -- 2.10. Spurious Modes -- 2.11. Ultimate Test

3. Transient Techniques -- 3.1. Introduction -- 3.2. Starting Modes -- 3.3. Starting Basic Example -- 3.4. Simulation Techniques -- 3.5. Second Starting Example -- 3.6. Starting Case Study -- 3.7. Triggering -- 3.8. Simulation Techniques for High Loaded Q -- 3.9. Steady-State Oscillator Waveforms -- 3.10. Waveform Derived Output Spectrum

4. Noise -- 4.1. Definitions -- 4.2. Predicting Phase Noise -- 4.3. Measuring Phase Noise -- 4.4. Designing for Low Phase Noise -- 4.5. Nonlinear Noise Simulation -- 4.6. PLL Noise

5. General-Purpose Oscillators -- 5.1. Comments on the Examples -- 5.2. Oscillators Without Resonators -- 5.3. L-C Oscillators -- 5.4. Oscillator Topology Selection

6. Distributed Oscillators -- 6.1. Resonator Technologies -- 6.2. Lumped and Distributed Equivalents -- 6.3. Quarter-Wavelength Resonators -- 6.4. Distributed Oscillator Examples -- 6.5. DRO Oscillators

7. Tuned Oscillators -- 7.1. Resonator Tuning Bandwidth -- 7.2. Resonator Voltage -- 7.3. Permeability Tuning -- 7.4. Tunable Oscillator Examples -- 7.5. YIG Oscillators

8. Piezoelectric Oscillators -- 8.1. Bulk Quartz Resonators -- 8.2. Fundamental Mode Crystal Oscillators -- 8.3. Overtone Mode Crystal Oscillators -- 8.4. Crystal Oscillator Examples Summary -- 8.5. Oscillator with Frequency Multiplier -- 8.6. Crystal Oscillator Starting -- 8.7. Surface Acoustic Wave Resonators -- 8.8. SAW Oscillators -- 8.9. Piezoelectric Ceramic Resonators -- 8.10. MEMS and FBAR Resonators

Appendix A. Modeling -- A.1. Capacitors -- A.2. Varactors -- A.3. Inductors -- A.4. Helical Transmission Lines -- A.5. Signal Control Devices -- A.6. Characteristic Impedance of Transmission Lines -- A.7. Helical Resonators -- Appendix B. Device Biasing -- B.1. Biasing Bipolar Transistors -- B.2. FET Bias Networks -- B.3. Bias 19 MMIC Gain Block.

"Written by a recognized expert in the field, this authoritative one-stop resource covers the practical design of high-frequency oscillators with lumped, distributed, dielectric, and piezoelectric resonators. Including numerous examples, the book details important linear, nonlinear harmonic balance, transient, and noise analysis techniques. Moreover, the book shows engineers how to apply these techniques to a wide range of oscillators. Professionals gain the knowledge needed to create unique designs that elegantly match their specification needs. Over 350 illustrations and more than 200 equations support key topics throughout the book."--Jacket

Print version record.

English.

WorldCat record variable field(s) change: 650

Powered by Koha