Amazon cover image
Image from Amazon.com

Evolutionary multi-criterion optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4-7, 2025, Proceedings. Part II / Hemant Singh, Tapabrata Ray, Joshua Knowles, Xiaodong Li, Juergen Branke, Bing Wang, Akira Oyama, editors.

By: Contributor(s): Material type: TextTextSeries: Lecture notes in computer science ; 15513.Publisher: Singapore : Springer, 2025Description: 1 online resource (xvii, 266 pages) : illustrations (some color)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789819635382
  • 9819635381
Other title:
  • EMO 2025
Subject(s): DDC classification:
  • 658.4/03 23/eng/20250303
LOC classification:
  • T57.95
Online resources:
Contents:
Algorithm analysis. -- Visual Explanations of Some Problematic Search Behaviors of Frequently Used EMO Algorithms. -- Numerical Analysis of Pareto Set Modeling. -- When Is Non-deteriorating Population Update in MOEAs Beneficial?. -- Analysis of Merge Non-dominated Sorting Algorithm. -- Comparative Analysis of Indicators for Multi-objective Diversity Optimization. -- Performance Analysis of Constrained Evolutionary Multi-Objective Optimization Algorithms on Artificial and Real-World Problems. -- On the Approximation of the Entire Pareto Front of a Constrained Multi objective Optimization Problem. -- Small Population Size is Enough in Many Cases with External Archives. -- Surrogates and machine learning. -- Knowledge Gradient for Multi-Objective Bayesian Optimization with Decoupled Evaluations. -- Surrogate Strategies for Scalarisation-based Multi-objective Bayesian Optimizers. -- A Mixed-Fidelity Evaluation Algorithm for Efficient Constrained Multi- and Many-Objective Optimization: First Results. -- Efficient and Accurate Surrogate-Assisted Approach to Multi-Objective Optimization Using Deep Neural Networks. -- Large Language Model for Multiobjective Evolutionary Optimization. -- Multi-Objective Multi-Agent Reinforcement Learning for Autonomous Driving in Mixed-Traffic Environments. -- Parallel TD3 for Policy Gradient-based Multi-Condition Multi-Objective Optimisation. -- Multi-criteria decision support. -- Reliability-based MCDM Using Objective Preferences Under Variable Uncertainty. -- An Efficient Iterative Approach for Uniformly Representing Pareto Fronts. -- Preference Learning for Multi-objective Reinforcement Learning by Means of Supervised Learning. -- Bayesian preference elicitation for decision support in multi-objective optimization.
Summary: This two-volume set LNCS 15512-15513 constitutes the proceedings of the 13th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2025, held in Canberra, ACT, Australia, in March 2025. The 38 full papers and 2 extended abstracts presented in this book were carefully reviewed and selected from 63 submissions. The papers are divided into the following topical sections: Part I : Algorithm design; Benchmarking; Applications. Part II : Algorithm analysis; Surrogates and machine learning; Multi-criteria decision support.
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library eBook LNCS Available
Total holds: 0

Algorithm analysis. -- Visual Explanations of Some Problematic Search Behaviors of Frequently Used EMO Algorithms. -- Numerical Analysis of Pareto Set Modeling. -- When Is Non-deteriorating Population Update in MOEAs Beneficial?. -- Analysis of Merge Non-dominated Sorting Algorithm. -- Comparative Analysis of Indicators for Multi-objective Diversity Optimization. -- Performance Analysis of Constrained Evolutionary Multi-Objective Optimization Algorithms on Artificial and Real-World Problems. -- On the Approximation of the Entire Pareto Front of a Constrained Multi objective Optimization Problem. -- Small Population Size is Enough in Many Cases with External Archives. -- Surrogates and machine learning. -- Knowledge Gradient for Multi-Objective Bayesian Optimization with Decoupled Evaluations. -- Surrogate Strategies for Scalarisation-based Multi-objective Bayesian Optimizers. -- A Mixed-Fidelity Evaluation Algorithm for Efficient Constrained Multi- and Many-Objective Optimization: First Results. -- Efficient and Accurate Surrogate-Assisted Approach to Multi-Objective Optimization Using Deep Neural Networks. -- Large Language Model for Multiobjective Evolutionary Optimization. -- Multi-Objective Multi-Agent Reinforcement Learning for Autonomous Driving in Mixed-Traffic Environments. -- Parallel TD3 for Policy Gradient-based Multi-Condition Multi-Objective Optimisation. -- Multi-criteria decision support. -- Reliability-based MCDM Using Objective Preferences Under Variable Uncertainty. -- An Efficient Iterative Approach for Uniformly Representing Pareto Fronts. -- Preference Learning for Multi-objective Reinforcement Learning by Means of Supervised Learning. -- Bayesian preference elicitation for decision support in multi-objective optimization.

This two-volume set LNCS 15512-15513 constitutes the proceedings of the 13th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2025, held in Canberra, ACT, Australia, in March 2025. The 38 full papers and 2 extended abstracts presented in this book were carefully reviewed and selected from 63 submissions. The papers are divided into the following topical sections: Part I : Algorithm design; Benchmarking; Applications. Part II : Algorithm analysis; Surrogates and machine learning; Multi-criteria decision support.

Includes author index.

Online resource; title from PDF title page (SpringerLink, viewed March 3, 2025).

Powered by Koha