TY - BOOK AU - Morvan,Jean-Marie ED - SpringerLink (Online service) TI - Generalized Curvatures T2 - Geometry and Computing, SN - 9783540737926 AV - QA641-670 U1 - 516.36 23 PY - 2008/// CY - Berlin, Heidelberg PB - Springer Berlin Heidelberg KW - Mathematics KW - Computer graphics KW - Computer mathematics KW - Differential geometry KW - Differential Geometry KW - Computational Mathematics and Numerical Analysis KW - Computer Imaging, Vision, Pattern Recognition and Graphics N1 - Motivations -- Motivation: Curves -- Motivation: Surfaces -- Background: Metrics and Measures -- Distance and Projection -- Elements of Measure Theory -- Background: Polyhedra and Convex Subsets -- Polyhedra -- Convex Subsets -- Background: Classical Tools in Differential Geometry -- Differential Forms and Densities on EN -- Measures on Manifolds -- Background on Riemannian Geometry -- Riemannian Submanifolds -- Currents -- On Volume -- Approximation of the Volume -- Approximation of the Length of Curves -- Approximation of the Area of Surfaces -- The Steiner Formula -- The Steiner Formula for Convex Subsets -- Tubes Formula -- Subsets of Positive Reach -- The Theory of Normal Cycles -- Invariant Forms -- The Normal Cycle -- Curvature Measures of Geometric Sets -- Second Fundamental Measure -- Applications to Curves and Surfaces -- Curvature Measures in E2 -- Curvature Measures in E3 -- Approximation of the Curvature of Curves -- Approximation of the Curvatures of Surfaces -- On Restricted Delaunay Triangulations N2 - The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with respect toG if the corresponding 0 quantity Q[g(S)] associated to g(S) equals Q(S), for all g?G . For instance, the 0 diameter ofS and the area of the convex hull ofS are quantities geometric with respect toG . But the distance from the origin O to the closest point ofS is not, 0 since it is not invariant under translations ofS. It is important to point out that the property of being geometric depends on the chosen group. For instance, ifG is the 1 N group of projective transformations of E , then the property ofS being a circle is geometric forG but not forG , while the property of being a conic or a straight 0 1 line is geometric for bothG andG . This point of view may be generalized to any 0 1 subsetS of any vector space E endowed with a groupG acting on it UR - http://dx.doi.org/10.1007/978-3-540-73792-6 ER -