TY - BOOK AU - Murai,Takafumi TI - A real variable method for the Cauchy transform and analytic capacity T2 - Lecture notes in mathematics, SN - 9783540391050 AV - QA3QA360 .L28 no. 1307 U1 - 510 s515 19 PY - 1988/// CY - Berlin, New York PB - Springer-Verlag KW - Geometric function theory KW - Cauchy transform KW - Analytic functions KW - Functional analysis KW - Transformations (Mathematics) KW - Cauchy problem KW - Analyse fonctionnelle KW - Transformations (Mathématiques) KW - Problème de Cauchy KW - Théorie géométrique des fonctions KW - Cauchy, Transformée de KW - Fonctions analytiques KW - Funciones analíticas KW - embne KW - Análisis funcional KW - Transformaciones (Matemáticas) KW - Funciones, Teoría geométrica de KW - embucm KW - fast KW - Analytische Kapazität KW - gnd KW - Cauchy-Transformierte KW - Cauchy, Transformació de KW - lemac KW - Nombres reals KW - Anàlisi funcional KW - Geometria algebraica KW - nli N1 - Includes bibliographical references (pages 129-131) and index; The Caldern Commutator (8 Proofs of its Boundedness) -- A Real Variable Method for the Cauchy Transform on Graphs -- Analytic Capacities of Cranks -- Appendix I -- Appendix II -- References -- Subject Index; Electronic reproduction; [Place of publication not identified]; HathiTrust Digital Library; 2010 N2 - This research monograph studies the Cauchy transform on curves with the object of formulating a precise estimate of analytic capacity. The note is divided into three chapters. The first chapter is a review of the Caldern commutator. In the second chapter, a real variable method for the Cauchy transform is given using only the rising sun lemma. The final and principal chapter uses the method of the second chapter to compare analytic capacity with integral-geometric quantities. The prerequisites for reading this book are basic knowledge of singular integrals and function theory. It addresses specialists and graduate students in function theory and in fluid dynamics UR - https://link-springer-com.libraryproxy.ist.ac.at/10.1007/BFb0078078 ER -