TY - BOOK AU - Ambrosio,Luigi AU - Colli,P. AU - Rodrigues,José-Francisco ED - Euro-Summer School on Mathematical Aspects of Evolving Interfaces TI - Mathematical aspects of evolving interfaces: lectures given at the C.I.M.-C.I.M.E. joint Euro-summer school held in Madeira, Funchal, Portugal, July 3-9, 2000 T2 - Lecture notes in mathematics, SN - 3540140336 AV - QA3QC20.7.B6 .L28 no. 1812 U1 - 510 s515/.35 21 PY - 2003/// CY - Berlin, New York PB - Springer KW - Boundary value problems KW - Congresses KW - Reaction-diffusion equations KW - Interfaces (Physical sciences) KW - Mathematics KW - Mathematical physics KW - Problèmes aux limites KW - Congrès KW - Équations de réaction-diffusion KW - Interfaces (Sciences physiques) KW - Mathématiques KW - Physique mathématique KW - Física matemática KW - Congresos KW - embne KW - Ecuaciones de reacción-difusión KW - embucm KW - fast KW - Randwaardeproblemen KW - gtt KW - Partiële differentiaalvergelijkingen KW - Grensvlakken KW - proceedings (reports) KW - aat KW - Conference papers and proceedings KW - lcgft KW - Actes de congrès KW - rvmgf N1 - Includes bibliographical references; Preface -- 1. L. Ambrosio: Lecture Notes on Optimal Transport Problems -- 2. K. Deckelnick and G. Gziuk: Numerical Approximation of Mean Curvature Flow of Graphs and Level Sets -- 3. M. Mimura: Reaction-Diffusion Systems Arising in Biological and Chemical Systems: Application of Singular Limit Procedures -- 4. V.A. Solonnikov: Lectures on Evolution Free Boundary Problems: Classical Solutions -- 5. H.M. Soner: Variational and Dynamic Problems for the Ginzburg-Landau Functional N2 - Interfaces are geometrical objects modelling free or moving boundaries and arise in a wide range of phase change problems in physical and biological sciences, particularly in material technology and in dynamics of patterns. Especially in the end of last century, the study of evolving interfaces in a number of applied fields becomes increasingly important, so that the possibility of describing their dynamics through suitable mathematical models became one of the most challenging and interdisciplinary problems in applied mathematics. The 2000 Madeira school reported on mathematical advances in some theoretical, modelling and numerical issues concerned with dynamics of interfaces and free boundaries. Specifically, the five courses dealt with an assessment of recent results on the optimal transportation problem, the numerical approximation of moving fronts evolving by mean curvature, the dynamics of patterns and interfaces in some reaction-diffusion systems with chemical-biological applications, evolutionary free boundary problems of parabolic type or for Navier-Stokes equations, and a variational approach to evolution problems for the Ginzburg-Landau functional UR - https://link-springer-com.libraryproxy.ist.ac.at/10.1007/b11357 ER -