TY - BOOK AU - Graczyk,Jacek AU - Świa̧tek,Grzegorz TI - The real Fatou conjecture T2 - Annals of mathematics studies SN - 9781400865185 AV - QA614.58 .G73 1998eb U1 - 516.362 23 PY - 1998/// CY - Princeton, N.J. PB - Princeton University Press KW - Geodesics (Mathematics) KW - Mappings (Mathematics) KW - Polynomials KW - Mathematik KW - Géodésiques (Mathématiques) KW - Applications (Mathématiques) KW - Polynômes KW - MATHEMATICS KW - Geometry KW - General KW - bisacsh KW - Complex Analysis KW - fast KW - Absolute value KW - Affine transformation KW - Algebraic function KW - Analytic continuation KW - Analytic function KW - Arithmetic KW - Automorphism KW - Big O notation KW - Bounded set (topological vector space) KW - C0 KW - Calculation KW - Canonical map KW - Change of variables KW - Chebyshev polynomials KW - Combinatorics KW - Commutative property KW - Complex number KW - Complex plane KW - Complex quadratic polynomial KW - Conformal map KW - Conjecture KW - Conjugacy class KW - Conjugate points KW - Connected component (graph theory) KW - Connected space KW - Continuous function KW - Corollary KW - Covering space KW - Critical point (mathematics) KW - Dense set KW - Derivative KW - Diffeomorphism KW - Dimension KW - Disjoint sets KW - Disjoint union KW - Disk (mathematics) KW - Equicontinuity KW - Estimation KW - Existential quantification KW - Fibonacci KW - Functional equation KW - Fundamental domain KW - Generalization KW - Great-circle distance KW - Hausdorff distance KW - Holomorphic function KW - Homeomorphism KW - Homotopy KW - Hyperbolic function KW - Imaginary number KW - Implicit function theorem KW - Injective function KW - Integer KW - Intermediate value theorem KW - Interval (mathematics) KW - Inverse function KW - Irreducible polynomial KW - Iteration KW - Jordan curve theorem KW - Julia set KW - Limit of a sequence KW - Linear map KW - Local diffeomorphism KW - Mathematical induction KW - Mathematical proof KW - Maxima and minima KW - Meromorphic function KW - Moduli (physics) KW - Monomial KW - Monotonic function KW - Natural number KW - Neighbourhood (mathematics) KW - Open set KW - Parameter KW - Periodic function KW - Periodic point KW - Phase space KW - Point at infinity KW - Polynomial KW - Projection (mathematics) KW - Quadratic function KW - Quadratic KW - Quasiconformal mapping KW - Renormalization KW - Riemann sphere KW - Riemann surface KW - Schwarzian derivative KW - Scientific notation KW - Subsequence KW - Theorem KW - Theory KW - Topological conjugacy KW - Topological entropy KW - Topology KW - Union (set theory) KW - Unit circle KW - Unit disk KW - Upper and lower bounds KW - Upper half-plane KW - Z0 N1 - Includes bibliographical references and index; Frontmatter --; Contents --; Chapter 1. Review of Concepts --; Chapter 2. Quasiconformal Gluing --; Chapter 3. Polynomial-Like Property --; Chapter 4. Linear Growth of Moduli --; Chapter 5. Quasi conformal Techniques --; Bibliography --; Index N2 - In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students UR - https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818439 ER -