TY - BOOK AU - Zeraoulia,Elhadj AU - Sprott,Julien C. TI - Frontiers in the study of chaotic dynamical systems with open problems T2 - World Scientific series on nonlinear science. Series B. Special theme issues and proceedings AV - Q172.5.C45 F756 2011eb U1 - 003/.857 23 PY - 2011/// CY - Singapore, Hackensack, N.J. PB - World Scientific KW - Chaotic behavior in systems KW - Dynamics KW - SCIENCE / Chaotic Behavior in Systems KW - bisacsh KW - Electronic books N1 - Includes bibliographical references and indexes; Machine generated contents note; 1; Problems with Lorenz's Modeling and the Algorithm of Chaos Doctrine; Y. Lin --; 1.1; Introduction --; 1.2; Lorenz's Modeling and Problems of the Model --; 1.3; Computational Schemes and What Lorenz's Chaos Is --; 1.4; Discussion --; 1.5; Appendix: Another Way to Show that Chaos Theory Suffers From Flaws --; References --; 2; Nonexistence of Chaotic Solutions of Nonlinear Differential Equations; L. S. Yao --; 2.1; Introduction --; 2.2; Open Problems About Nonexistence of Chaotic Solutions --; References --; 3; Some Open Problems in the Dynamics of Quadratic and Higher Degree Polynomial ODE Systems; J. Heidel --; 3.1; First Open Problem --; 3.2; Second Open Problem --; 3.3; Third Open Problem --; 3.4; Fourth Open Problem --; 3.5; Fifth Open Problem --; 3.6; Sixth Open Problem --; References --; 4; On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems; G. M. Mahmoud; 4.1; Introduction --; 4.2; Examples --; 4.2.1; Dynamical Properties of Chaotic Complex Chen System --; 4.2.2; Hyperchaotic Complex Lorenz Systems --; 4.3; Open Problems --; 4.4; Conclusions --; References --; 5; On the Study of Chaotic Systems with Non-Horseshoe Template; S. Basak --; 5.1; Introduction --; 5.2; Formulation --; 5.3; Topological Analysis and Its Invariants --; 5.4; Application to Circuit Data --; 5.4.1; Search for Close Return --; 5.4.2; Topological Constant --; 5.4.3; Template Identification --; 5.4.4; Template Verification --; 5.5; Conclusion and Discussion --; References --; 6; Instability of Solutions of Fourth and Fifth Order Delay Differential Equations; C. Tunc --; 6.1; Introduction --; 6.2; Open Problems --; 6.3; Conclusion --; References --; 7; Some Conjectures About the Synchronizability and the Topology of Networks; S. Fernandes --; 7.1; Introduction --; 7.2; Related and Historical Problems About Network Synchronizability --; 7.3; Some Physical Examples About the Real Applications of Network Synchronizability; 7.4; Preliminaries --; 7.5; Complete Clustered Networks --; 7.5.1; Clustering Point on Complete Clustered Networks --; 7.5.2; Classification of the Clustering and the Amplitude of the Synchronization Interval --; 7.5.3; Discussion --; 7.6; Symbolic Dynamics and Networks Synchronization --; References --; 8; Wavelet Study of Dynamical Systems Using Partial Differential Equations; E. B. Postnikov --; 8.1; Definitions and State of Art --; 8.2; Open Problems in the Continuous Wavelet Transform and a Topology of Bounding Tori --; 8.3; The Evaluation of the Continuous Wavelet Transform Using Partial Differential Equations in Non-Cartesian Co-ordinates and Multidimensional Case --; 8.4; Discussion of Open Problems --; References --; 9; Combining the Dynamics of Discrete Dynamical Systems; J. S. Canovas --; 9.1; Introduction --; 9.2; Basic Definitions and Notations --; 9.3; Statement of the Problems --; 9.3.1; Dynamic Parrondo's Paradox and Commuting Functions --; 9.3.2; Dynamics Shared by Commuting Functions; 9.3.3; Computing Problems for Large Periods T --; 9.3.4; Commutativity Problems --; 9.3.5; Generalization to Continuous Triangular Maps on the Square --; References --; 10; Code Structure for Pairs of Linear Maps with Some Open Problems; P. Troshin --; 10.1; Introduction --; 10.2; Iterated Function System --; 10.3; Attractor of Pair of Linear Maps --; 10.4; Code Structure of Pair of Linear Maps --; 10.5; Sufficient Conditions for Computing the Code Structure --; 10.6; Conclusion and Open Questions --; References --; 11; Recent Advances in Open Billiards with Some Open Problems; C. P. Dettmann --; 11.1; Introduction --; 11.2; Closed Dynamical Systems --; 11.3; Open Dynamical Systems --; 11.4; Open Billiards --; 11.5; Physical Applications --; 11.6; Discussion --; References --; 12; Open Problems in the Dynamics of the Expression of Gene Interaction Networks; V. Naudot --; 12.1; Introduction --; 12.2; Attractors for Flows and Diffeomorphisms; 12.3; Statement of the Problem --; 12.3.1; A First Attempt --; 12.3.2; Examples --; 12.4; Experimental Information --; 12.5; Theoretical Models of Gene Interaction --; 12.6; Conclusions --; References --; 13; How to Transform a Type of Chaos in Dynamical Systems?; J. C. Sprott --; 13.1; Introduction --; 13.2; Hyperbolification of Dynamical Systems --; 13.3; Transforming Dynamical Systems to Lorenz-Type Chaos --; 13.4; Transforming Dynamical Systems to Quasi-Attractor Systems --; 13.5; A Common Classification of Strange Attractors of Dynamical Systems --; References UR - https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389644 ER -