Amazon cover image
Image from Amazon.com

Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications / Mohammad Abdur Razzaque, Md. Rezaul Karim.

By: Contributor(s): Material type: TextTextPublication details: Birmingham : Packt Publishing, Limited, 2019.Description: 1 online resource (298 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 1789616069
  • 9781789616064
Subject(s): Genre/Form: Additional physical formats: Print version:: Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications.DDC classification:
  • 005.8 23
LOC classification:
  • TK5105.8857
Online resources:
Contents:
Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks; Chapter 1: The End-to-End Life Cycle of the IoT; The E2E life cycle of the IoT; The three-layer E2E IoT life cycle; The five-layer IoT E2E life cycle; IoT system architectures; IoT application domains; The importance of analytics in IoT; The motivation to use DL in IoT data analytics; The key characteristics and requirements of IoT data; Real-life examples of fast and streaming IoT data; Real-life examples of IoT big data
AutoencodersConvolutional neural networks; Recurrent neural networks; Emergent architectures; Residual neural networks; Generative adversarial networks; Capsule networks; Neural networks for clustering analysis; DL frameworks and cloud platforms for IoT; Summary; Section 2: Hands-On Deep Learning Application Development for IoT; Chapter 3: Image Recognition in IoT; IoT applications and image recognition; Use case one -- image-based automated fault detection; Implementing use case one; Use case two -- image-based smart solid waste separation; Implementing use case two
Transfer learning for image recognition in IoTCNNs for image recognition in IoT applications; Collecting data for use case one; Exploring the dataset from use case one; Collecting data for use case two; Data exploration of use case two; Data pre-processing; Models training; Evaluating models; Model performance (use case one); Model performance (use case two); Summary; References; Chapter 4: Audio/Speech/Voice Recognition in IoT; Speech/voice recognition for IoT; Use case one -- voice-controlled smart light; Implementing use case one; Use case two -- voice-controlled home access
Implementing use case twoDL for sound/audio recognition in IoT; ASR system model; Features extraction in ASR; DL models for ASR; CNNs and transfer learning for speech recognition in IoT applications; Collecting data; Exploring data; Data preprocessing; Models training; Evaluating models; Model performance (use case 1); Model performance (use case 2); Summary; References; Chapter 5: Indoor Localization in IoT; An overview of indoor localization; Techniques for indoor localization; Fingerprinting; DL-based indoor localization for IoT; K-nearest neighbor (k-NN) classifier; AE classifier
Example -- Indoor localization with Wi-Fi fingerprinting
Summary: Reference; Chapter 2: Deep Learning Architectures for IoT; A soft introduction to ML; Working principle of a learning algorithm; General ML rule of thumb; General issues in ML models; ML tasks; Supervised learning; Unsupervised learning; Reinforcement learning; Learning types with applications; Delving into DL; How did DL take ML to the next level?; Artificial neural networks; ANN and the human brain; A brief history of ANNs; How does an ANN learn?; Training a neural network; Weight and bias initialization; Activation functions; Neural network architectures; Deep neural networksSummary: This book will provide you an overview of Deep Learning techniques to facilitate the analytics and learning in various IoT apps. We will take you through each process - from data collection, analysis, modeling, statistics, and monitoring. We will make IoT data speak with a set of popular frameworks, like TensorFlow, TensorFlow Lite, and Chainer.
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library EBSCO Computers Available
Total holds: 0

Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks; Chapter 1: The End-to-End Life Cycle of the IoT; The E2E life cycle of the IoT; The three-layer E2E IoT life cycle; The five-layer IoT E2E life cycle; IoT system architectures; IoT application domains; The importance of analytics in IoT; The motivation to use DL in IoT data analytics; The key characteristics and requirements of IoT data; Real-life examples of fast and streaming IoT data; Real-life examples of IoT big data

Reference; Chapter 2: Deep Learning Architectures for IoT; A soft introduction to ML; Working principle of a learning algorithm; General ML rule of thumb; General issues in ML models; ML tasks; Supervised learning; Unsupervised learning; Reinforcement learning; Learning types with applications; Delving into DL; How did DL take ML to the next level?; Artificial neural networks; ANN and the human brain; A brief history of ANNs; How does an ANN learn?; Training a neural network; Weight and bias initialization; Activation functions; Neural network architectures; Deep neural networks

AutoencodersConvolutional neural networks; Recurrent neural networks; Emergent architectures; Residual neural networks; Generative adversarial networks; Capsule networks; Neural networks for clustering analysis; DL frameworks and cloud platforms for IoT; Summary; Section 2: Hands-On Deep Learning Application Development for IoT; Chapter 3: Image Recognition in IoT; IoT applications and image recognition; Use case one -- image-based automated fault detection; Implementing use case one; Use case two -- image-based smart solid waste separation; Implementing use case two

Transfer learning for image recognition in IoTCNNs for image recognition in IoT applications; Collecting data for use case one; Exploring the dataset from use case one; Collecting data for use case two; Data exploration of use case two; Data pre-processing; Models training; Evaluating models; Model performance (use case one); Model performance (use case two); Summary; References; Chapter 4: Audio/Speech/Voice Recognition in IoT; Speech/voice recognition for IoT; Use case one -- voice-controlled smart light; Implementing use case one; Use case two -- voice-controlled home access

Implementing use case twoDL for sound/audio recognition in IoT; ASR system model; Features extraction in ASR; DL models for ASR; CNNs and transfer learning for speech recognition in IoT applications; Collecting data; Exploring data; Data preprocessing; Models training; Evaluating models; Model performance (use case 1); Model performance (use case 2); Summary; References; Chapter 5: Indoor Localization in IoT; An overview of indoor localization; Techniques for indoor localization; Fingerprinting; DL-based indoor localization for IoT; K-nearest neighbor (k-NN) classifier; AE classifier

Example -- Indoor localization with Wi-Fi fingerprinting

This book will provide you an overview of Deep Learning techniques to facilitate the analytics and learning in various IoT apps. We will take you through each process - from data collection, analysis, modeling, statistics, and monitoring. We will make IoT data speak with a set of popular frameworks, like TensorFlow, TensorFlow Lite, and Chainer.

Print version record.

Includes bibliographical references.

Added to collection customer.56279.3

Powered by Koha