Amazon cover image
Image from Amazon.com

DNA computing : 10th International Workshop on DNA Computing, DNA10, Milan, Italy, June 7-10, 2004 : revised selected papers / Claudio Ferretti, Giancarlo Mauri, Claudio Zandron (eds.).

By: Contributor(s): Material type: TextTextSeries: Lecture notes in computer science ; 3384.Publication details: Berlin ; New York : Springer, ©2005.Description: 1 online resource (x, 470 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540318446
  • 3540318445
  • 3540261745
  • 9783540261742
Subject(s): Genre/Form: Additional physical formats: Print version:: DNA computing.DDC classification:
  • 621.391 22
LOC classification:
  • QA76.887 .I58 2004eb
Other classification:
  • 54.10
Online resources:
Contents:
Computing by Observing Bio-systems: The Case of Sticker Systems -- DNA-Based Computation Times -- Computing Beyond the Turing Limit Using the H Systems -- Biomolecular Implementation of Computing Devices with Unbounded Memory -- Characterization of Non-crosshybridizing DNA Oligonucleotides Manufactured In Vitro -- Error Free Self-assembly Using Error Prone Tiles -- On the Computational Complexity of P Automata -- A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric for DNA Codes -- DNA Extraction by XPCR -- A Method of Error Suppression for Self-assembling DNA Tiles -- Using Automated Reasoning Systems on Molecular Computing -- Parallelism in Gene Assembly -- Splicing Systems for Universal Turing Machines -- Application of Mismatch Detection Methods in DNA Computing -- Bond-Free Languages: Formalizations, Maximality and Construction Methods -- Preventing Undesirable Bonds Between DNA Codewords -- Testing Structure Freeness of Regular Sets of Biomolecular Sequences -- Minimum Basin Algorithm: An Effective Analysis Technique for DNA Energy Landscapes -- Efficient Initial Pool Generation for Weighted Graph Problems Using Parallel Overlap Assembly -- Partial Words for DNA Coding -- Accepting Hybrid Networks of Evolutionary Processors -- Building the Components for a Biomolecular Computer -- Methods for Manipulating DNA Molecules in a Micrometer Scale Using Optical Techniques -- From Cells to Computers: Membrane Computing -- A Quick Overview -- The Capacity of DNA for Information Encoding -- Compact Error-Resilient Computational DNA Tiling Assemblies -- Toward "Wet" Implementation of Genetic Algorithm for Protein Engineering -- Programmable Control of Nucleation for Algorithmic Self-assembly -- DNA Hybridization Catalysts and Catalyst Circuits -- Complexity of Self-assembled Shapes -- Aqueous Computing with DNA Hairpin-Based RAM -- A Programmable Molecular Computer in Microreactors -- Combinatorial Aspects of Minimal DNA Expressions -- A Design for Cellular Evolutionary Computation by Using Bacteria -- An Inexpensive LED-Based Fluorometer Used to Study a Hairpin-Based DNA Nanomachine -- Designs of Autonomous Unidirectional Walking DNA Devices -- Design of an Autonomous DNA Nanomechanical Device Capable of Universal Computation and Universal Translational Motion -- A Clocked DNA-Based Replicator -- A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers.
Summary: "The meeting took place at the University of Milano-Bicocca, Milan, Italy, from June 7 to June 10, 2004, and it was organized by the University of Milano-Bicocca and the Department of Informatics of the University of Milano-Bicocca."
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library eBook LNCS Available
Total holds: 0

Includes bibliographical references and index.

"The meeting took place at the University of Milano-Bicocca, Milan, Italy, from June 7 to June 10, 2004, and it was organized by the University of Milano-Bicocca and the Department of Informatics of the University of Milano-Bicocca."

Print version record.

Computing by Observing Bio-systems: The Case of Sticker Systems -- DNA-Based Computation Times -- Computing Beyond the Turing Limit Using the H Systems -- Biomolecular Implementation of Computing Devices with Unbounded Memory -- Characterization of Non-crosshybridizing DNA Oligonucleotides Manufactured In Vitro -- Error Free Self-assembly Using Error Prone Tiles -- On the Computational Complexity of P Automata -- A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric for DNA Codes -- DNA Extraction by XPCR -- A Method of Error Suppression for Self-assembling DNA Tiles -- Using Automated Reasoning Systems on Molecular Computing -- Parallelism in Gene Assembly -- Splicing Systems for Universal Turing Machines -- Application of Mismatch Detection Methods in DNA Computing -- Bond-Free Languages: Formalizations, Maximality and Construction Methods -- Preventing Undesirable Bonds Between DNA Codewords -- Testing Structure Freeness of Regular Sets of Biomolecular Sequences -- Minimum Basin Algorithm: An Effective Analysis Technique for DNA Energy Landscapes -- Efficient Initial Pool Generation for Weighted Graph Problems Using Parallel Overlap Assembly -- Partial Words for DNA Coding -- Accepting Hybrid Networks of Evolutionary Processors -- Building the Components for a Biomolecular Computer -- Methods for Manipulating DNA Molecules in a Micrometer Scale Using Optical Techniques -- From Cells to Computers: Membrane Computing -- A Quick Overview -- The Capacity of DNA for Information Encoding -- Compact Error-Resilient Computational DNA Tiling Assemblies -- Toward "Wet" Implementation of Genetic Algorithm for Protein Engineering -- Programmable Control of Nucleation for Algorithmic Self-assembly -- DNA Hybridization Catalysts and Catalyst Circuits -- Complexity of Self-assembled Shapes -- Aqueous Computing with DNA Hairpin-Based RAM -- A Programmable Molecular Computer in Microreactors -- Combinatorial Aspects of Minimal DNA Expressions -- A Design for Cellular Evolutionary Computation by Using Bacteria -- An Inexpensive LED-Based Fluorometer Used to Study a Hairpin-Based DNA Nanomachine -- Designs of Autonomous Unidirectional Walking DNA Devices -- Design of an Autonomous DNA Nanomechanical Device Capable of Universal Computation and Universal Translational Motion -- A Clocked DNA-Based Replicator -- A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers.

University staff and students only. Requires University Computer Account login off-campus.

Powered by Koha