Coevolution of transcription factors and their binding sites in sequence space

By: Material type: TextTextPublication details: IST Austria 2019Online resources:
Contents:
Abstract
About the Author
List of Publications
List of Tables
List of Figures
List of Abbreviations
0 Introduction
1 TF-DNA binding in sequence space
2 Crosstalk in gene regulation
3 General theoretical formulation of TF-BS coevolution
4 Coevolution of duplicated TFs with their binding sites
5 Bioinformatic analysis for the evolution of Zn-finger TFs
Coevolution of transcription factors and their binding sites in sequence space
Bibliography
Summary: Transcription factors, by binding to specific sequences on the DNA, control the precise spatio-temporal expression of genes inside a cell. However, this specificity is limited, leading to frequent incorrect binding of transcription factors that might have deleterious consequences on the cell. By constructing a biophysical model of TF-DNA binding in the context of gene regulation, I will first explore how regulatory constraints can strongly shape the distribution of a population in sequence space. Then, by directly linking this to a picture of multiple types of transcription factors performing their functions simultaneously inside the cell, I will explore the extent of regulatory crosstalk -- incorrect binding interactions between transcription factors and binding sites that lead to erroneous regulatory states -- and understand the constraints this places on the design of regulatory systems. I will then develop a generic theoretical framework to investigate the coevolution of multiple transcription factors and multiple binding sites, in the context of a gene regulatory network that performs a certain function. As a particular tractable version of this problem, I will consider the evolution of two transcription factors when they transmit upstream signals to downstream target genes. Specifically, I will describe the evolutionary steady states and the evolutionary pathways involved, along with their timescales, of a system that initially undergoes a transcription factor duplication event. To connect this important theoretical model to the prominent biological event of transcription factor duplication giving rise to paralogous families, I will then describe a bioinformatics analysis of C2H2 Zn-finger transcription factors, a major family in humans, and focus on the patterns of evolution that paralogs have undergone in their various protein domains in the recent past.
List(s) this item appears in: ISTA Thesis
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Book Book Library Quiet Room (Browse shelf(Opens below)) Available AT-ISTA#001870
Total holds: 0

Thesis

Abstract

About the Author

List of Publications

List of Tables

List of Figures

List of Abbreviations

0 Introduction

1 TF-DNA binding in sequence space

2 Crosstalk in gene regulation

3 General theoretical formulation of TF-BS coevolution

4 Coevolution of duplicated TFs with their binding sites

5 Bioinformatic analysis for the evolution of Zn-finger TFs

Coevolution of transcription factors and their binding sites in sequence space

Bibliography

Transcription factors, by binding to specific sequences on the DNA, control the precise spatio-temporal expression of genes inside a cell. However, this specificity is limited, leading to frequent incorrect binding of transcription factors that might have deleterious consequences on the cell. By constructing a biophysical model of TF-DNA binding in the context of gene regulation, I will first explore how regulatory constraints can strongly shape the distribution of a population in sequence space. Then, by directly linking this to a picture of multiple types of transcription factors performing their functions simultaneously inside the cell, I will explore the extent of regulatory crosstalk -- incorrect binding interactions between transcription factors and binding sites that lead to erroneous regulatory states -- and understand the constraints this places on the design of regulatory systems. I will then develop a generic theoretical framework to investigate the coevolution of multiple transcription factors and multiple binding sites, in the context of a gene regulatory network that performs a certain function. As a particular tractable version of this problem, I will consider the evolution of two transcription factors when they transmit upstream signals to downstream target genes. Specifically, I will describe the evolutionary steady states and the evolutionary pathways involved, along with their timescales, of a system that initially undergoes a transcription factor duplication event. To connect this important theoretical model to the prominent biological event of transcription factor duplication giving rise to paralogous families, I will then describe a bioinformatics analysis of C2H2 Zn-finger transcription factors, a major family in humans, and focus on the patterns of evolution that paralogs have undergone in their various protein domains in the recent past.

Powered by Koha