Amazon cover image
Image from Amazon.com

Ultrafilters and topologies on groups [electronic resource] / Yevhen G. Zelenyuk.

By: Material type: TextTextSeries: De Gruyter expositions in mathematics ; 50.Publication details: Berlin ; New York : De Gruyter, c2011.Description: 1 online resource (viii, 219 p.)ISBN:
  • 9783110213225 (electronic bk.)
  • 3110213222 (electronic bk.)
Subject(s): Genre/Form: Additional physical formats: Print version:: Ultrafilters and topologies on groups.DDC classification:
  • 512/.55 22
LOC classification:
  • QA166.195 .Z45 2011eb
Online resources: Summary: This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results about ultrafilters. Topics covered include: topological and left topological groups, ultrafilter semigroups, local homomorphisms and automorphisms, subgroups and ideal structure of ßG, almost maximal spaces and projectives of finite semigroups, resolvability of groups. This is a self-contained book aimed at graduate students and researchers working in topological algebra and adjacent areas. From the contents: Topological Groups Ultrafilters Topological Spaces with Extremal Properties Left Invariant Topologies and Strongly Discrete Filters Topological Groups with Extremal Properties The Semigroup ßS Ultrafilter Semigroups Finite Groups in ßG Ideal Structure of ßS Almost Maximal Topological Groups and Spaces Resolvability Open Problems.
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library EBSCO Mathematics Available
Total holds: 0

Includes bibliographical references and index.

Description based on print version record.

This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results about ultrafilters. Topics covered include: topological and left topological groups, ultrafilter semigroups, local homomorphisms and automorphisms, subgroups and ideal structure of ßG, almost maximal spaces and projectives of finite semigroups, resolvability of groups. This is a self-contained book aimed at graduate students and researchers working in topological algebra and adjacent areas. From the contents: Topological Groups Ultrafilters Topological Spaces with Extremal Properties Left Invariant Topologies and Strongly Discrete Filters Topological Groups with Extremal Properties The Semigroup ßS Ultrafilter Semigroups Finite Groups in ßG Ideal Structure of ßS Almost Maximal Topological Groups and Spaces Resolvability Open Problems.

Powered by Koha