Amazon cover image
Image from Amazon.com

Medical computer vision and Bayesian and graphical models for biomedical imaging : MICCAI 2016 International Workshops, MCV and BAMBI, Athens, Greece, October 21, 2016, Revised selected papers / Henning Müller, B. Michael Kelm, Tal Arbel, Weidong Cai, M. Jorge Cardoso, Georg Langs, Bjoern Menze, Dimitris Metaxas, Albert Montillo, William M. Wells III, Shaoting Zhang, Albert C.S. Chung, Mark Jenkinson, Annemie Ribbens (eds.).

By: Contributor(s): Material type: TextTextSeries: Lecture notes in computer science ; 10081. | LNCS sublibrary. SL 6, Image processing, computer vision, pattern recognition, and graphics.Publisher: Cham, Switzerland : Springer, 2017Description: 1 online resource (xiii, 222 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319611884
  • 3319611887
  • 3319611879
  • 9783319611877
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 610.2856 23
LOC classification:
  • R859.7.C67
NLM classification:
  • WB 141
Online resources:
Contents:
Constructing Subject- and Disease-Specific Effect Maps: Application to Neurodegenerative Diseases -- BigBrain: Automated Cortical Parcellation and Comparison with Existing Brain Atlases -- LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images -- Landmark-based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images -- Inferring Disease Status by non-Parametric Probabilistic Embedding -- A Lung Graph-Model for Pulmonary Hypertension and Pulmonary Embolism Detection on DECT Images -- Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study -- Automatic Segmentation of Abdominal MRI Using Selective Sampling and Random Walker -- Gaze2Segment: A Pilot Study for Integrating Eye-Tracking Technology into Medical Image Segmentation -- Automatic Detection of Histological Artifacts in Mouse Brain Slice Images -- Lung Nodule Classification by Jointly Using Visual Descriptors and Deep Features -- Representation Learning for Cross-Modality Classification -- Guideline-based Machine Learning for Standard Plane Extraction in 3D Cardiac Ultrasound -- A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images -- Bayesian Multiview Manifold Learning Applied to Hippocampus Shape and Clinical Score Data -- Rigid Slice-To-Volume Medical Image Registration through Markov Random Fields -- Sparse Probabilistic Parallel Factor Analysis for the Modeling of PET and Task-fMRI data -- Non-local Graph-based Regularization for Deformable Image Registration -- Unsupervised Framework for Consistent Longitudinal MS Lesion Segmentation.
Summary: This book constitutes the thoroughly refereed post-workshop proceedings of the International Workshop on Medical Computer Vision, MCV 2016, and of the International Workshop on Bayesian and grAphical Models for Biomedical Imaging, BAMBI 2016, held in Athens, Greece, in October 2016, held in conjunction with the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016. The 13 papers presented in MCV workshop and the 6 papers presented in BAMBI workshop were carefully reviewed and selected from numerous submissions. The goal of the MCV workshop is to explore the use of "big data" algorithms for harvesting, organizing and learning from large-scale medical imaging data sets and for general-purpose automatic understanding of medical images. The BAMBI workshop aims to highlight the potential of using Bayesian or random field graphical models for advancing research in biomedical image analysis
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library eBook LNCS Available
Total holds: 0

Includes author index.

Online resource; title from PDF title page (SpringerLink, viewed July 6, 2017).

Constructing Subject- and Disease-Specific Effect Maps: Application to Neurodegenerative Diseases -- BigBrain: Automated Cortical Parcellation and Comparison with Existing Brain Atlases -- LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images -- Landmark-based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images -- Inferring Disease Status by non-Parametric Probabilistic Embedding -- A Lung Graph-Model for Pulmonary Hypertension and Pulmonary Embolism Detection on DECT Images -- Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study -- Automatic Segmentation of Abdominal MRI Using Selective Sampling and Random Walker -- Gaze2Segment: A Pilot Study for Integrating Eye-Tracking Technology into Medical Image Segmentation -- Automatic Detection of Histological Artifacts in Mouse Brain Slice Images -- Lung Nodule Classification by Jointly Using Visual Descriptors and Deep Features -- Representation Learning for Cross-Modality Classification -- Guideline-based Machine Learning for Standard Plane Extraction in 3D Cardiac Ultrasound -- A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images -- Bayesian Multiview Manifold Learning Applied to Hippocampus Shape and Clinical Score Data -- Rigid Slice-To-Volume Medical Image Registration through Markov Random Fields -- Sparse Probabilistic Parallel Factor Analysis for the Modeling of PET and Task-fMRI data -- Non-local Graph-based Regularization for Deformable Image Registration -- Unsupervised Framework for Consistent Longitudinal MS Lesion Segmentation.

This book constitutes the thoroughly refereed post-workshop proceedings of the International Workshop on Medical Computer Vision, MCV 2016, and of the International Workshop on Bayesian and grAphical Models for Biomedical Imaging, BAMBI 2016, held in Athens, Greece, in October 2016, held in conjunction with the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016. The 13 papers presented in MCV workshop and the 6 papers presented in BAMBI workshop were carefully reviewed and selected from numerous submissions. The goal of the MCV workshop is to explore the use of "big data" algorithms for harvesting, organizing and learning from large-scale medical imaging data sets and for general-purpose automatic understanding of medical images. The BAMBI workshop aims to highlight the potential of using Bayesian or random field graphical models for advancing research in biomedical image analysis

Includes bibliographical references and author index.

Powered by Koha