Artificial neural networks in pattern recognition : 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, September 19-21, 2018, Proceedings / Luca Pancioni, Friedhelm Schwenker, Edmondo Trentin (eds.).
Material type:
TextSeries: Lecture notes in computer science ; 11081. | Lecture notes in computer science. Lecture notes in artificial intelligence. | LNCS sublibrary. SL 7, Artificial intelligence.Publisher: Cham : Springer, 2018Description: 1 online resource (xi, 408 pages) : illustrationsContent type: - text
- computer
- online resource
- 9783319999784
- 3319999788
- 9783319999791
- 3319999796
- ANNPR 2018
- Neural networks (Computer science) -- Congresses
- Pattern recognition systems -- Congresses
- Artificial Intelligence
- Pattern Recognition
- Image Processing and Computer Vision
- Natural Language Processing (NLP)
- Data Mining and Knowledge Discovery
- Réseaux neuronaux (Informatique) -- Congrès
- Reconnaissance des formes (Informatique) -- Congrès
- Pattern recognition
- Image processing
- Natural language & machine translation
- Data mining
- Artificial intelligence
- Computers -- Computer Vision & Pattern Recognition
- Computers -- Computer Graphics
- Computers -- Natural Language Processing
- Computers -- Database Management -- Data Mining
- Computers -- Intelligence (AI) & Semantics
- Neural networks (Computer science)
- Pattern recognition systems
- 006.3/2 23
- TK7882.P3 A56 2018eb
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
|---|---|---|---|---|---|---|---|---|
eBook
|
e-Library | eBook LNCS | Available |
International conference proceedings.
Includes author index.
Online resource; title from PDF title page (SpringerLink, viewed September 7, 2018).
Chapter "Bounded Rational Decision-Making with Adaptive Neural Network Priors" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Intro -- Preface -- Organization -- Contents -- Invited Papers -- What's Wrong with Computer Vision? -- 1 Introduction -- 2 Top Ten Questions a Theory on Vision Should Address -- 3 Hierarchical Description of Visual Tasks -- 3.1 Pixel-Wise and Abstract Visual Interpretations -- 3.2 The Interwound Story of Vision and Language -- 3.3 When Vision Collapses to Classification -- 4 Conclusions -- References -- Deep Learning in the Wild -- 1 Introduction -- 2 Face Matching -- 3 Print Media Monitoring -- 4 Visual Quality Control -- 5 Music Scanning -- 6 Game Playing -- 7 Automated Machine Learning
8 Conclusions -- References -- Learning Algorithms and Architectures -- Effect of Equality Constraints to Unconstrained Large Margin Distribution Machines -- 1 Introduction -- 2 Least Squares Support Vector Machines -- 3 Large Margin Distribution Machines and Their Variants -- 3.1 Large Margin Distribution Machines -- 3.2 Least Squares Large Margin Distribution Machines -- 3.3 Unconstrained Large Margin Distribution Machines -- 4 Performance Evaluation -- 4.1 Conditions for Experiment -- 4.2 Results for Two-Class Problems -- 5 Conclusions -- References -- DLL: A Fast Deep Neural Network Library
1 Introduction -- 2 DLL: Deep Learning Library -- 2.1 Performance -- 2.2 Example -- 3 Experimental Evaluation -- 4 MNIST -- 4.1 Fully-Connected Neural Network -- 4.2 Convolutional Neural Network -- 5 CIFAR-10 -- 6 ImageNet -- 7 Conclusion and Future Work -- References -- Selecting Features from Foreign Classes -- 1 Introduction -- 2 Methods -- 2.1 Learning from Context Classes -- 2.2 Foreign Class Combinations -- 3 Experiments -- 3.1 Datasets -- 4 Results -- 5 Discussion and Conclusion -- References -- A Refinement Algorithm for Deep Learning via Error-Driven Propagation of Target Outputs
1 Introduction -- 2 Error-Driven Target Propagation: Formalization of the Algorithms -- 2.1 The Inversion Net -- 2.2 Refinement of Deep Learning via Target Propagation -- 3 Experiments -- 4 Conclusions -- References -- Combining Deep Learning and Symbolic Processing for Extracting Knowledge from Raw Text -- 1 Introduction -- 2 Model -- 2.1 Semantic Features -- 2.2 Logic Constraints -- 2.3 Segmentation -- 3 Experiments -- 4 Conclusions -- References -- SeNA-CNN: Overcoming Catastrophic Forgetting in Convolutional Neural Networks by Selective Network Augmentation -- 1 Introduction -- 2 Related Work
3 Proposed Method -- 4 Experiments -- 4.1 Network Architecture -- 4.2 Training Methodology -- 4.3 Isolated Learning -- 4.4 Adding New Tasks to the Models -- 4.5 Three Tasks Scenario -- 5 Conclusion -- References -- Classification Uncertainty of Deep Neural Networks Based on Gradient Information -- 1 Introduction -- 2 Entropy, Softmax Baseline and Gradient Metrics -- 3 Meta Classification -- A Benchmark Between Maximum Softmax Probability and Gradient Metrics -- 4 Recognition of Unlearned Concepts -- 5 Meta Classification with Known Unknowns -- 6 Conclusion and Outlook -- References