Convex functions [electronic resource] : constructions, characterizations and counterexamples / Jonathan M. Borwein, Jon D. Vanderwerff.
Material type:
TextSeries: Encyclopedia of mathematics and its applications ; v. 109.Publication details: Cambridge, UK ; New York : Cambridge University Press, 2010.Description: 1 online resource (x, 521 p.) : illISBN: - 9781139811798 (electronic bk.)
- 1139811797 (electronic bk.)
- 515.8 22
- QA331.5 .B655 2010eb
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
|---|---|---|---|---|---|---|---|---|
eBook
|
e-Library | EBSCO Mathematics | Available |
Includes bibliographical references (p. [485]-507) and index.
Why convex? -- Convex functions on Euclidean spaces -- Finer structure of Euclidean spaces -- Convex functions on Banach spaces -- Duality between smoothness and strict convexity -- Further analytic topics -- Barriers and Legendre functions -- Convex functions and classifications of Banach spaces -- Monotone operators and the Fitzpatrick function -- Further remarks and notes.
This text explores the various classes and their characteristics, treating convex functions in both Euclidean and Banach spaces.
Description based on print version record.