Amazon cover image
Image from Amazon.com

Semantic technology : 9th Joint International Conference, JIST 2019, Hangzhou, China, November 25-27, 2019, Proceedings / Xin Wang, Francesca Alessandra Lisi, Guohui Xiao, Elena Botoeva (eds.).

By: Contributor(s): Material type: TextTextSeries: Lecture notes in computer science ; 12032. | LNCS sublibrary. SL 3, Information systems and applications, incl. Internet/Web, and HCI.Publication details: Cham : Springer, 2020.Description: 1 online resource (398 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783030414078
  • 3030414078
Other title:
  • JIST 2019
Subject(s): Genre/Form: Additional physical formats: Print version:: Semantic Technology : 9th Joint International Conference, JIST 2019, Hangzhou, China, November 25-27, 2019, Proceedings.DDC classification:
  • 006 23
LOC classification:
  • QA76.5913
Online resources:
Contents:
Intro -- Preface -- Organization -- Contents -- Incorporating Term Definitions for Taxonomic Relation Identification -- 1 Introduction -- 2 Related Work -- 3 The Proposed Method -- 3.1 The Baseline System -- 3.2 Our Proposed Model -- 4 Experiments and Analysis -- 4.1 Dataset -- 4.2 Experimental Settings -- 4.3 Performance on Specific and Open Domain Datasets -- 4.4 Error Analysis -- 5 Conclusion -- References -- Report on the First Knowledge Graph Reasoning Challenge 2018 -- 1 Background and Goal of the Challenge -- 2 Knowledge Graph Construction -- 2.1 Process of Holding the Challenge
2.2 Details of the Schema -- 3 Approach for Estimation and Reasoning Techniques -- 3.1 Submission of NRI -- 3.2 Submission of Team Kamikotanaka 411, Fujitsu -- 3.3 Submission of Team FLL-ML, Fujitsu -- 3.4 Submission of Nagoya Institute of Technology -- 4 Evaluation -- 4.1 Basic Information -- 4.2 Expert Evaluation -- 4.3 General Examination -- 4.4 Evaluation Results -- 5 Related Work -- 6 Conclusion and Future Work -- References -- Violence Identification in Social Media -- 1 Introduction -- 2 Background -- 3 Methodology -- 3.1 Knowledge Base Construction Stage
3.2 Social Media Data Collection -- 3.3 Knowledge Processing Stage -- 3.4 Violence Domain Identification -- 4 Evaluation -- 4.1 Discussion of the Evaluation -- 5 Conclusions -- References -- Event-Oriented Wiki Document Generation -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Topic Template Induction -- 3.2 Topic Summary Generation -- 4 Dataset Construction -- 5 Experiments -- 5.1 Dataset -- 5.2 Topic Template Induction -- 5.3 Topic Summary Generation -- 6 Conclusion -- References -- A Linked Data Model-View-* Approach for Decoupled Client-Server Applications -- 1 Introduction
2 Related Work -- 3 Preliminaries -- 3.1 Model-View-* Patterns -- 3.2 Entity-Component-Attribute Data Model -- 3.3 Linked Data Platform -- 3.4 Richardson Maturity Model -- 4 Server-Side Linked Data Generation -- 4.1 Linked Data Representation of Runtime Data -- 4.2 RESTful Operations on Runtime Data: -- 4.3 Realtime Subscription Pub/Sub: -- 5 Client-Side Data Access Layer Generation -- 6 Discussion -- 6.1 MVPVM Pattern in Resulting Architecture -- 6.2 RMM-Compliance of Server Interfaces -- 7 Conclusion and Future Work -- References
JECI: A Joint Knowledge Graph Embedding Model for Concepts and Instances -- 1 Introduction -- 2 Preliminaries -- 3 JECI Model -- 3.1 Hierarchical Tree Generator -- 3.2 Context Vector Generator -- 3.3 Embeddings Learner -- 4 Experiments -- 4.1 Datasets -- 4.2 Link Prediction -- 4.3 Triple Classification -- 4.4 Limitations -- 5 Conclusion -- References -- Enhanced Entity Mention Recognition and Disambiguation Technologies for Chinese Knowledge Base Q & A -- 1 Introduction -- 2 Related Work -- 2.1 Mention Recognition Research -- 2.2 Entity Disambiguation Research -- 3 Topic Entity Mention Recognition
Summary: This book constitutes the thoroughly refereed proceedings of the 9th Joint International Semantic Technology Conference, JIST 2019, held in Hangzhou, China, in November 2019. The 24 full papers presented were carefully reviewed and selected from 70 submissions. They present applications of semantic technologies, theoretical results, new algorithms and tools to facilitate the adoption of semantic technologies and are organized in topical sections on knowledge graphs; data management; question answering and NLP; ontology and reasoning; government open data; and semantic web for life sciences.
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library eBook LNCS Available
Total holds: 0

International conference proceedings.

Print version record.

Intro -- Preface -- Organization -- Contents -- Incorporating Term Definitions for Taxonomic Relation Identification -- 1 Introduction -- 2 Related Work -- 3 The Proposed Method -- 3.1 The Baseline System -- 3.2 Our Proposed Model -- 4 Experiments and Analysis -- 4.1 Dataset -- 4.2 Experimental Settings -- 4.3 Performance on Specific and Open Domain Datasets -- 4.4 Error Analysis -- 5 Conclusion -- References -- Report on the First Knowledge Graph Reasoning Challenge 2018 -- 1 Background and Goal of the Challenge -- 2 Knowledge Graph Construction -- 2.1 Process of Holding the Challenge

2.2 Details of the Schema -- 3 Approach for Estimation and Reasoning Techniques -- 3.1 Submission of NRI -- 3.2 Submission of Team Kamikotanaka 411, Fujitsu -- 3.3 Submission of Team FLL-ML, Fujitsu -- 3.4 Submission of Nagoya Institute of Technology -- 4 Evaluation -- 4.1 Basic Information -- 4.2 Expert Evaluation -- 4.3 General Examination -- 4.4 Evaluation Results -- 5 Related Work -- 6 Conclusion and Future Work -- References -- Violence Identification in Social Media -- 1 Introduction -- 2 Background -- 3 Methodology -- 3.1 Knowledge Base Construction Stage

3.2 Social Media Data Collection -- 3.3 Knowledge Processing Stage -- 3.4 Violence Domain Identification -- 4 Evaluation -- 4.1 Discussion of the Evaluation -- 5 Conclusions -- References -- Event-Oriented Wiki Document Generation -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Topic Template Induction -- 3.2 Topic Summary Generation -- 4 Dataset Construction -- 5 Experiments -- 5.1 Dataset -- 5.2 Topic Template Induction -- 5.3 Topic Summary Generation -- 6 Conclusion -- References -- A Linked Data Model-View-* Approach for Decoupled Client-Server Applications -- 1 Introduction

2 Related Work -- 3 Preliminaries -- 3.1 Model-View-* Patterns -- 3.2 Entity-Component-Attribute Data Model -- 3.3 Linked Data Platform -- 3.4 Richardson Maturity Model -- 4 Server-Side Linked Data Generation -- 4.1 Linked Data Representation of Runtime Data -- 4.2 RESTful Operations on Runtime Data: -- 4.3 Realtime Subscription Pub/Sub: -- 5 Client-Side Data Access Layer Generation -- 6 Discussion -- 6.1 MVPVM Pattern in Resulting Architecture -- 6.2 RMM-Compliance of Server Interfaces -- 7 Conclusion and Future Work -- References

JECI: A Joint Knowledge Graph Embedding Model for Concepts and Instances -- 1 Introduction -- 2 Preliminaries -- 3 JECI Model -- 3.1 Hierarchical Tree Generator -- 3.2 Context Vector Generator -- 3.3 Embeddings Learner -- 4 Experiments -- 4.1 Datasets -- 4.2 Link Prediction -- 4.3 Triple Classification -- 4.4 Limitations -- 5 Conclusion -- References -- Enhanced Entity Mention Recognition and Disambiguation Technologies for Chinese Knowledge Base Q & A -- 1 Introduction -- 2 Related Work -- 2.1 Mention Recognition Research -- 2.2 Entity Disambiguation Research -- 3 Topic Entity Mention Recognition

3.1 Algorithm Description

Includes bibliographic references author index.

This book constitutes the thoroughly refereed proceedings of the 9th Joint International Semantic Technology Conference, JIST 2019, held in Hangzhou, China, in November 2019. The 24 full papers presented were carefully reviewed and selected from 70 submissions. They present applications of semantic technologies, theoretical results, new algorithms and tools to facilitate the adoption of semantic technologies and are organized in topical sections on knowledge graphs; data management; question answering and NLP; ontology and reasoning; government open data; and semantic web for life sciences.

Powered by Koha