A real variable method for the Cauchy transform and analytic capacity / Takafumi Murai.
Material type:
TextSeries: Lecture notes in mathematics (Springer-Verlag) ; 1307.Publication details: Berlin ; New York : Springer-Verlag, ©1988.Description: 1 online resource (vi, 133 pages) : illustrationsContent type: - text
- computer
- online resource
- 9783540391050
- 3540391053
- Geometric function theory
- Cauchy transform
- Analytic functions
- Functional analysis
- Transformations (Mathematics)
- Cauchy problem
- Analyse fonctionnelle
- Transformations (Mathématiques)
- Problème de Cauchy
- Théorie géométrique des fonctions
- Cauchy, Transformée de
- Fonctions analytiques
- Funciones analíticas
- Análisis funcional
- Transformaciones (Matemáticas)
- Funciones, Teoría geométrica de
- Transformations (Mathematics)
- Functional analysis
- Cauchy problem
- Analytic functions
- Cauchy transform
- Geometric function theory
- Analytische Kapazität
- Cauchy-Transformierte
- Cauchy, Transformació de
- Nombres reals
- Anàlisi funcional
- Geometria algebraica
- Analytic functions
- Geometric function theory
- 510 s 515 19
- QA3 .L28 no. 1307 QA360
- SI 850
- MAT 440f
- 30C85
- digitized 2010 HathiTrust Digital Library committed to preserve
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
|---|---|---|---|---|---|---|---|---|
eBook
|
e-Library | eBook LN Mathematic | Available |
Includes bibliographical references (pages 129-131) and index.
The Caldern Commutator (8 Proofs of its Boundedness) -- A Real Variable Method for the Cauchy Transform on Graphs -- Analytic Capacities of Cranks -- Appendix I -- Appendix II -- References -- Subject Index.
Use copy Restrictions unspecified star MiAaHDL
This research monograph studies the Cauchy transform on curves with the object of formulating a precise estimate of analytic capacity. The note is divided into three chapters. The first chapter is a review of the Caldern commutator. In the second chapter, a real variable method for the Cauchy transform is given using only the rising sun lemma. The final and principal chapter uses the method of the second chapter to compare analytic capacity with integral-geometric quantities. The prerequisites for reading this book are basic knowledge of singular integrals and function theory. It addresses specialists and graduate students in function theory and in fluid dynamics.
Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2010. MiAaHDL
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. MiAaHDL
http://purl.oclc.org/DLF/benchrepro0212
digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL
Print version record.