Amazon cover image
Image from Amazon.com

M-Solid Varieties of Algebras [electronic resource] / by J. Koppitz, K. Denecke.

By: Contributor(s): Material type: TextTextSeries: Advances in Mathematics ; 10Publisher: Boston, MA : Springer US, 2006Description: XIV, 342 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387308067
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 512 23
LOC classification:
  • QA150-272
Online resources:
Contents:
Basic Concepts -- Closure Operators and Lattices -- M-Hyperidentities and M-solid Varieties -- Hyperidentities and Clone Identities -- Solid Varieties of Arbitrary Type -- Monoids of Hypersubstitutions -- M-Solid Varieties of Semigroups -- M-solid Varieties of Semirings.
In: Springer eBooksSummary: M-Solid Varieties of Algebras provides a complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on M-solid varieties of semirings and semigroups. The book aims to develop the theory of M-solid varieties as a system of mathematical discourse that is applicable in several concrete situations. It applies the general theory to two classes of algebraic structures, semigroups and semirings. Both these varieties and their subvarieties play an important role in computer science. A unique feature of this book is the use of Galois connections to integrate different topics. Galois connections form the abstract framework not only for classical and modern Galois theory, involving groups, fields and rings, but also for many other algebraic, topological, ordertheoretical, categorical and logical theories. This concept is used throughout the whole book, along with the related topics of closure operators, complete lattices, Galois closed subrelations and conjugate pairs of completely additive closure operators. Audience This book is intended for researchers in the fields of universal algebra, semigroups, and semirings; researchers in theoretical computer science; and students and lecturers in these fields.
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
eBook eBook e-Library EBook Available
Total holds: 0

Basic Concepts -- Closure Operators and Lattices -- M-Hyperidentities and M-solid Varieties -- Hyperidentities and Clone Identities -- Solid Varieties of Arbitrary Type -- Monoids of Hypersubstitutions -- M-Solid Varieties of Semigroups -- M-solid Varieties of Semirings.

M-Solid Varieties of Algebras provides a complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on M-solid varieties of semirings and semigroups. The book aims to develop the theory of M-solid varieties as a system of mathematical discourse that is applicable in several concrete situations. It applies the general theory to two classes of algebraic structures, semigroups and semirings. Both these varieties and their subvarieties play an important role in computer science. A unique feature of this book is the use of Galois connections to integrate different topics. Galois connections form the abstract framework not only for classical and modern Galois theory, involving groups, fields and rings, but also for many other algebraic, topological, ordertheoretical, categorical and logical theories. This concept is used throughout the whole book, along with the related topics of closure operators, complete lattices, Galois closed subrelations and conjugate pairs of completely additive closure operators. Audience This book is intended for researchers in the fields of universal algebra, semigroups, and semirings; researchers in theoretical computer science; and students and lecturers in these fields.

Powered by Koha