000 04317nam a22005535i 4500
001 978-1-4614-7972-7
003 DE-He213
005 20180115171530.0
007 cr nn 008mamaa
008 130912s2013 xxu| s |||| 0|eng d
020 _a9781461479727
_9978-1-4614-7972-7
024 7 _a10.1007/978-1-4614-7972-7
_2doi
050 4 _aQA403-403.3
072 7 _aPBKD
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515.785
_223
100 1 _aTerras, Audrey.
_eauthor.
245 1 0 _aHarmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane
_h[electronic resource] /
_cby Audrey Terras.
250 _a2nd ed. 2013.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _aXVII, 413 p. 83 illus., 32 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aChapter 1 Flat Space. Fourier Analysis on R^m. -- 1.1 Distributions or Generalized Functions -- 1.2 Fourier Integrals -- 1.3 Fourier Series and the Poisson Summation Formula -- 1.4 Mellin Transforms, Epstein and Dedekind Zeta Functions -- 1.5 Finite Symmetric Spaces, Wavelets, Quasicrystals, Weyl’s Criterion for Uniform Distribution -- Chapter 2 A Compact Symmetric Space--The Sphere -- 2.1 Fourier Analysis on the Sphere -- 2.2 O(3) and R^3. The Radon Transform -- Chapter 3 The Poincaré Upper Half-Plane -- 3.1 Hyperbolic Geometry -- 3.2 Harmonic Analysis on H -- 3.3 Fundamental Domains for Discrete Subgroups Γ of G = SL(2, R) -- 3.4 Modular of Automorphic Forms--Classical -- 3.5 Automorphic Forms--Not So Classical--Maass Waveforms -- 3.6 Modular Forms and Dirichlet Series. Hecke Theory and Generalizations -- References -- Index.
520 _aThis unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections, new topics, and updates have been incorporated in this new edition. These include discussions of the work of P. Sarnak and others making progress on various conjectures on modular forms, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", Ramanujan graphs, wavelets, quasicrystals, modular knots, triangle and quaternion groups, computations of Maass waveforms, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, the Selberg trace formula and its applications in spectral theory as well as number theory.
650 0 _aMathematics.
650 0 _aGroup theory.
650 0 _aTopological groups.
650 0 _aLie groups.
650 0 _aHarmonic analysis.
650 0 _aFourier analysis.
650 0 _aFunctions of complex variables.
650 0 _aSpecial functions.
650 1 4 _aMathematics.
650 2 4 _aAbstract Harmonic Analysis.
650 2 4 _aFourier Analysis.
650 2 4 _aGroup Theory and Generalizations.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aFunctions of a Complex Variable.
650 2 4 _aSpecial Functions.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461479710
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-7972-7
912 _aZDB-2-SMA
999 _c370781
_d370781