000 03088nam a22004815i 4500
001 978-3-319-16375-8
003 DE-He213
005 20180115171630.0
007 cr nn 008mamaa
008 150518s2015 gw | s |||| 0|eng d
020 _a9783319163758
_9978-3-319-16375-8
024 7 _a10.1007/978-3-319-16375-8
_2doi
050 4 _aT57-57.97
072 7 _aPBW
_2bicssc
072 7 _aMAT003000
_2bisacsh
082 0 4 _a519
_223
100 1 _aLeimkuhler, Ben.
_eauthor.
245 1 0 _aMolecular Dynamics
_h[electronic resource] :
_bWith Deterministic and Stochastic Numerical Methods /
_cby Ben Leimkuhler, Charles Matthews.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2015.
300 _aXXII, 443 p. 95 illus., 71 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aInterdisciplinary Applied Mathematics,
_x0939-6047 ;
_v39
505 0 _a1.Introduction -- 2.Numerical Integrators -- 3.Analyzing Geometric Integrators -- 4.The Stability Threshold -- 5.Phase Space Distributions and Microcanonical Averages -- 6. The Canonical Distribution and Stochastic Differential Equations -- 7. Numerical Methods for Stochastic Molecular Dynamics -- 8. Extended Variable Methods -- References -- Index.
520 _aThis book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications.  Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method. .
650 0 _aMathematics.
650 0 _aApplied mathematics.
650 0 _aEngineering mathematics.
650 0 _aBiomathematics.
650 1 4 _aMathematics.
650 2 4 _aApplications of Mathematics.
650 2 4 _aMathematical and Computational Biology.
700 1 _aMatthews, Charles.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319163741
830 0 _aInterdisciplinary Applied Mathematics,
_x0939-6047 ;
_v39
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-16375-8
912 _aZDB-2-SMA
999 _c371646
_d371646