000 08513cam a22008054a 4500
001 ocm48780455
003 OCoLC
005 20250703142707.0
006 m o d
007 cr |n|||||||||
008 010815s2001 gw a ob 101 0 eng c
010 _a 2001044635
040 _aCOO
_beng
_epn
_cCOO
_dABC
_dYNG
_dOCLCQ
_dOCLCF
_dOCLCO
_dOCLCQ
_dOCL
_dOCLCO
_dOCLCQ
_dDKDLA
_dUV0
_dGW5XE
_dUA@
_dYDX
_dOCLCQ
_dESU
_dUAB
_dOCLCQ
_dVT2
_dSHS
_dOCLCA
_dAU@
_dWYU
_dLEAUB
_dOL$
_dOCLCQ
_dAUD
_dOCLCO
_dOCLCQ
_dOCLCO
_dWSU
_dOCLCO
_dOCLCL
019 _a436620565
_a664271712
_a769770570
_a888346758
_a1005786755
_a1066588475
_a1081270403
_a1105600906
_a1132299768
020 _a9783540447955
020 _a3540447954
020 _z3540425365
_q(softcover ;
_qalk. paper)
020 _z9783540425366
_q(softcover ;
_qalk. paper)
024 7 _a10.1007/3-540-44795-4
_2doi
029 1 _aAU@
_b000044634966
029 1 _aAU@
_b000051332048
029 1 _aAU@
_b000051690535
029 1 _aAU@
_b000053215775
029 1 _aNZ1
_b14993816
029 1 _aNZ1
_b15301327
029 1 _aAU@
_b000078468585
035 _a(OCoLC)48780455
_z(OCoLC)436620565
_z(OCoLC)664271712
_z(OCoLC)769770570
_z(OCoLC)888346758
_z(OCoLC)1005786755
_z(OCoLC)1066588475
_z(OCoLC)1081270403
_z(OCoLC)1105600906
_z(OCoLC)1132299768
042 _apcc
050 4 _aQ325.5
_b.E85 2001
072 7 _aUYQ
_2bicssc
072 7 _aTJFM1
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aQA
_2lcco
082 0 4 _a006.3/1
_221
084 _a54.72
_2bcl
084 _aDAT 708f
_2stub
084 _aSS 4800
_2rvk
049 _aMAIN
111 2 _aEuropean Conference on Machine Learning
_n(12th :
_d2001 :
_cFreiburg, Germany)
_915513
245 1 0 _aMachine learning :
_bECML 2001 : 12th European Conference on Machine Learning, Freiburg, Germany, September 5-7, 2001 : proceedings /
_cLuc De Raedt, Peter Flach, eds.
260 _aBerlin ;
_aNew York :
_bSpringer-Verlag,
_c©2001.
300 _a1 online resource (xvii, 618 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture notes in artificial intelligence ;
_v2167.
_aLecture notes in computer science
504 _aIncludes bibliographical references and index.
505 0 _aRegular Papers -- An Axiomatic Approach to Feature Term Generalization -- Lazy Induction of Descriptions for Relational Case-Based Learning -- Estimating the Predictive Accuracy of a Classifier -- Improving the Robustness and Encoding Complexity of Behavioural Clones -- A Framework for Learning Rules from Multiple Instance Data -- Wrapping Web Information Providers by Transducer Induction -- Learning While Exploring: Bridging the Gaps in the Eligibility Traces -- A Reinforcement Learning Algorithm Applied to Simplified Two-Player Texas Hold'em Poker -- Speeding Up Relational Reinforcement Learning through the Use of an Incremental First Order Decision Tree Learner -- Analysis of the Performance of AdaBoost. M2 for the Simulated Digit-Recognition-Example -- Iterative Double Clustering for Unsupervised and Semi-supervised Learning -- On the Practice of Branching Program Boosting -- A Simple Approach to Ordinal Classification -- Fitness Distance Correlation of Neural Network Error Surfaces: A Scalable, Continuous Optimization Problem -- Extraction of Recurrent Patterns from Stratified Ordered Trees -- Understanding Probabilistic Classifiers -- Efficiently Determining the Starting Sample Size for Progressive Sampling -- Using Subclasses to Improve Classification Learning -- Learning What People (Don't) Want -- Towards a Universal Theory of Artificial Intelligence Based on Algorithmic Probability and Sequential Decisions -- Convergence and Error Bounds for Universal Prediction of Nonbinary Sequences -- Consensus Decision Trees: Using Consensus Hierarchical Clustering for Data Relabelling and Reduction -- Learning of Variability for Invariant Statistical Pattern Recognition -- The Evaluation of Predictive Learners: Some Theoretical and Empirical Results -- An Evolutionary Algorithm for Cost-Sensitive Decision Rule Learning -- A Mixture Approach to Novelty Detection Using Training Data with Outliers -- Applying the Bayesian Evidence Framework to?-Support Vector Regression -- DQL: A New Updating Strategy for Reinforcement Learning Based on Q-Learning -- A Language-Based Similarity Measure -- Backpropagation in Decision Trees for Regression -- Comparing the Bayes and Typicalness Frameworks -- Symbolic Discriminant Analysis for Mining Gene Expression Patterns -- Social Agents Playing a Periodical Policy -- Learning When to Collaborate among Learning Agents -- Building Committees by Clustering Models Based on Pairwise Similarity Values -- Second Order Features for Maximising Text Classification Performance -- Importance Sampling Techniques in Neural Detector Training -- Induction of Qualitative Trees -- Text Categorization Using Transductive Boosting -- Using Multiple Clause Constructors in Inductive Logic Programming for Semantic Parsing -- Using Domain Knowledge on Population Dynamics Modeling for Equation Discovery -- Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL -- A Unified Framework for Evaluation Metrics in Classification Using Decision Trees -- Improving Term Extraction by System Combination Using Boosting -- Classification on Data with Biased Class Distribution -- Discovering Admissible Simultaneous Equation Models from Observed Data -- Discovering Strong Principles of Expressive Music Performance with the PLCG Rule Learning Strategy -- Proportional k-Interval Discretization for Naive-Bayes Classifiers -- Using Diversity in Preparing Ensembles of Classifiers Based on Different Feature Subsets to Minimize Generalization Error -- Geometric Properties of Naive Bayes in Nominal Domains -- Invited Papers -- Support Vectors for Reinforcement Learning -- Combining Discrete Algorithmic and Probabilistic Approaches in Data Mining -- Statistification or Mystification? The Need for Statistical Thought in Visual Data Mining -- The Musical Expression Project: A Challenge for Machine Learning and Knowledge Discovery -- Scalability, Search, and Sampling: From Smart Algorithms to Active Discovery.
520 _aThis book constitutes the refereed proceedings of the 12th European Conference on Machine Learning, ECML 2001, held in Freiburg, Germany, in September 2001. The 50 revised full papers presented together with four invited contributions were carefully reviewed and selected from a total of 140 submissions. Among the topics covered are classifier systems, naive-Bayes classification, rule learning, decision tree-based classification, Web mining, equation discovery, inductive logic programming, text categorization, agent learning, backpropagation, reinforcement learning, sequence prediction, sequential decisions, classification learning, sampling, and semi-supervised learning.
650 0 _aMachine learning
_vCongresses.
_915308
650 0 _aMachine learning
_xIndustrial applications
_vCongresses.
_915514
650 6 _aApprentissage automatique
_vCongrès.
_920183
650 6 _aApprentissage automatique
_xApplications industrielles
_vCongrès.
_933172
650 7 _aMachine learning
_2fast
_91680
650 7 _aMachine learning
_xIndustrial applications
_2fast
_915515
655 7 _aproceedings (reports)
_2aat
655 7 _aConference papers and proceedings
_2fast
_96065
655 7 _aConference papers and proceedings.
_2lcgft
_96065
655 7 _aActes de congrès.
_2rvmgf
_9609890
700 1 _aRaedt, Luc de,
_d1964-
_1https://id.oclc.org/worldcat/entity/E39PCjJyXvPfTdPdPVTmt4GBrq
700 1 _aFlach, Peter,
_d1956-
_1https://id.oclc.org/worldcat/entity/E39PCjBXQX9vX8FQ7YqffXxXcX
_915517
758 _ihas work:
_aMachine learning (Text)
_1https://id.oclc.org/worldcat/entity/E39PCGXwcMTgKxrmQdYK9dRjbq
_4https://id.oclc.org/worldcat/ontology/hasWork
776 0 _aEuropean Conference on Machine Learning (12th : 2001 : Freiburg, Germany).
_tMachine learning : ECML 2001 : 12th European Conference on Machine Learning, Freiburg, Germany, September 5-7, 2001 : proceedings
_w(OCoLC)47837927
830 0 _aLecture notes in computer science ;
_v2167.
830 0 _aLecture notes in computer science.
_pLecture notes in artificial intelligence.
_914916
856 4 0 _uhttps://link.springer.com/10.1007/3-540-44795-4
938 _aYBP Library Services
_bYANK
_n13350663
994 _a92
_bATIST
999 _c635267
_d635267