000 05446cam a2200829 i 4500
001 on1046067086
003 OCoLC
005 20250707091721.0
006 m o d
007 cr cnu|||unuuu
008 180726s2018 sz a o 101 0 eng d
040 _aGW5XE
_beng
_erda
_epn
_cGW5XE
_dUCW
_dYDX
_dUAB
_dOCLCF
_dOCLCQ
_dMERER
_dUPM
_dVT2
_dU3W
_dESU
_dWYU
_dOCLCQ
_dLVT
_dOCLCQ
_dDKU
_dUKMGB
_dCAUOI
_dBRX
_dAUD
_dCOO
_dAU@
_dOCLCQ
_dOCL
_dS2H
_dLEATE
_dUX1
_dOCLCQ
_dOCLCO
_dCOM
_dOCLCO
_dOCLCQ
_dOCLCO
_dOCLCL
_dOCLCQ
_dOCLCO
015 _aGBB902509
_2bnb
016 7 _a019193888
_2Uk
019 _a1047653529
_a1049850266
_a1050722410
_a1066474273
_a1081296457
_a1082307102
_a1086570150
_a1117267337
_a1122813937
_a1122905466
_a1125714042
_a1136377337
020 _a9783319965628
_q(electronic bk.)
020 _a331996562X
_q(electronic bk.)
020 _z9783319965611
_q(print)
020 _z3319965611
024 7 _a10.1007/978-3-319-96562-8
_2doi
029 1 _aAU@
_b000063855851
029 1 _aUKMGB
_b019193888
035 _a(OCoLC)1046067086
_z(OCoLC)1047653529
_z(OCoLC)1049850266
_z(OCoLC)1050722410
_z(OCoLC)1066474273
_z(OCoLC)1081296457
_z(OCoLC)1082307102
_z(OCoLC)1086570150
_z(OCoLC)1117267337
_z(OCoLC)1122813937
_z(OCoLC)1122905466
_z(OCoLC)1125714042
_z(OCoLC)1136377337
037 _acom.springer.onix.9783319965628
_bSpringer Nature
050 4 _aQ325.5
072 7 _aUMZ
_2bicssc
072 7 _aUL
_2bicssc
072 7 _aCOM051230
_2bisacsh
072 7 _aUMZ
_2thema
072 7 _aUL
_2thema
082 0 4 _a006.3/1
_223
049 _aMAIN
245 0 0 _aMachine learning for dynamic software analysis :
_bpotentials and limits : International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised papers /
_cAmel Bennaceur, Reiner Hähnle, Karl Meinke (eds.).
264 1 _aCham, Switzerland :
_bSpringer,
_c2018.
300 _a1 online resource (ix, 257 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
347 _bPDF
490 1 _aLecture notes in computer science,
_x0302-9743 ;
_v11026
490 1 _aLNCS sublibrary. SL 2, Programming and software engineering
500 _aIncludes author index.
588 0 _aOnline resource; title from PDF title page (SpringerLink, viewed July 26, 2018).
505 0 _aIntroduction -- Testing and Learning -- Extensions of Automata Learning -- Integrative Approaches.
520 _aMachine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limits" held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches
650 0 _aMachine learning
_vCongresses.
_915308
650 6 _aApprentissage automatique
_vCongrès.
_920183
650 7 _aArtificial intelligence.
_2bicssc
_91340
650 7 _aComputer science.
_2bicssc
_9941
650 7 _aSoftware Engineering.
_2bicssc
_914736
650 7 _aComputers
_xIntelligence (AI) & Semantics.
_2bisacsh
_917680
650 7 _aComputers
_xComputer Science.
_2bisacsh
_917992
650 7 _aComputers
_xSoftware Development & Engineering
_xGeneral.
_2bisacsh
_94347
650 7 _aMachine learning
_2fast
_91680
655 2 _aCongress
_911670
655 7 _aproceedings (reports)
_2aat
655 7 _aConference papers and proceedings
_2fast
_96065
655 7 _aConference papers and proceedings.
_2lcgft
_96065
655 7 _aActes de congrès.
_2rvmgf
_9609890
700 1 _aBennaceur, Amel,
_eeditor.
_964507
700 1 _aHähnle, Reiner,
_eeditor.
_1https://id.oclc.org/worldcat/entity/E39PBJhMqGBPqXDyqFfpHjwt8C
_925349
700 1 _aMeinke, Karl,
_eeditor.
_964508
711 2 _aInternational Dagstuhl Seminar on Machine Learning for Dynamic Software Analysis: Potential and Limits
_d(2016 :
_cDagstuhl, Wadern, Germany)
_964509
758 _ihas work:
_aMachine learning for dynamic software analysis (Text)
_1https://id.oclc.org/worldcat/entity/E39PCGHFR83j3MJkx9cTfM4C73
_4https://id.oclc.org/worldcat/ontology/hasWork
776 0 8 _iPrinted edition:
_z9783319965611
830 0 _aLecture notes in computer science ;
_v11026.
_x0302-9743
830 0 _aLNCS sublibrary.
_nSL 2,
_pProgramming and software engineering.
_920654
856 4 0 _uhttps://link.springer.com/10.1007/978-3-319-96562-8
938 _aYBP Library Services
_bYANK
_n15620868
994 _a92
_bATIST
999 _c645955
_d645955