000 07984cam a2200997 i 4500
001 on1122856551
003 OCoLC
005 20250707092727.0
006 m o d
007 cr un|---aucuu
008 191011s2019 sz a o 101 0 eng d
040 _aGW5XE
_beng
_erda
_epn
_cGW5XE
_dEBLCP
_dUKMGB
_dOCLCQ
_dDKU
_dOCLCF
_dOCLCO
_dOCLCQ
_dSFB
_dLQU
_dVT2
_dOCLCQ
_dDCT
_dHUA
_dOCLCO
_dUAB
_dUKAHL
_dNLW
_dOCLCO
_dOCLCQ
_dOCLCO
_dCOM
_dOCLCO
_dOCLCQ
_dOCLCO
_dOCLCL
015 _aGBB9H2889
_2bnb
016 7 _a019567112
_2Uk
019 _a1125927818
_a1127262907
_a1135297050
_a1156182032
_a1161032084
_a1203977902
_a1203978056
_a1204057042
_a1223116807
_a1229941264
_a1243340841
_a1257373709
_a1259634136
_a1262907621
_a1264192837
020 _a9783030322335
_q(electronic bk.)
020 _a3030322335
_q(electronic bk.)
020 _a3030322327
020 _a9783030322328
020 _a9783030322342
_q(print)
020 _a3030322343
020 _z9783030322328
_q(print)
024 7 _a10.1007/978-3-030-32233-5
_2doi
024 8 _a10.1007/978-3-030-32
029 1 _aAU@
_b000066172172
029 1 _aAU@
_b000066210527
029 1 _aAU@
_b000067497203
029 1 _aAU@
_b000068656140
029 1 _aUKMGB
_b019567112
029 1 _aDKDLA
_b820120-katalog:999919254505765
029 1 _aAU@
_b000074075741
035 _a(OCoLC)1122856551
_z(OCoLC)1125927818
_z(OCoLC)1127262907
_z(OCoLC)1135297050
_z(OCoLC)1156182032
_z(OCoLC)1161032084
_z(OCoLC)1203977902
_z(OCoLC)1203978056
_z(OCoLC)1204057042
_z(OCoLC)1223116807
_z(OCoLC)1229941264
_z(OCoLC)1243340841
_z(OCoLC)1257373709
_z(OCoLC)1259634136
_z(OCoLC)1262907621
_z(OCoLC)1264192837
037 _acom.springer.onix.9783030322335
_bSpringer Nature
050 4 _aQA76.9.N38
_bN572 2019eb
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
049 _aMAIN
111 2 _aNLPCC (Conference)
_n(8th :
_d2019 :
_cDunhuang, China)
_968426
245 1 0 _aNatural language processing and Chinese computing :
_b8th CCF International Conference, NLPCC 2019, Dunhuang, China, October 9-14, 2019, Proceedings.
_nPart I /
_cJie Tang, Min-Yen Kan, Dongyan Zhao, Sujian Li, Hongying Zan (eds.).
246 3 _aNLPCC 2019
264 1 _aCham, Switzerland :
_bSpringer,
_c2019.
300 _a1 online resource :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
347 _bPDF
490 1 _aLecture Notes in Artificial Intelligence
490 1 _aLecture notes in computer science ;
_v11838
490 1 _aLNCS sublibrary. SL 7, Artificial intelligence
500 _aInternational conference proceedings.
500 _aIncludes author index.
588 0 _aOnline resource; title from PDF title page (SpringerLink, viewed October 11, 2019).
505 0 _aIntro; Preface; Organization; Contents -- Part I; Contents -- Part II; Conversational Bot/QA/IR; Variational Attention for Commonsense Knowledge Aware Conversation Generation; 1 Introduction; 2 Related Work; 3 Model Description; 3.1 Task Definition; 3.2 Background: Knowledge Aware Framework; 3.3 Variational Attention for Knowledge Incorporation; 4 Experiments; 4.1 Data; 4.2 Settings; 4.3 Baselines; 4.4 Automatic Evaluation; 4.5 Manual Evaluation; 4.6 Extra Accurate Incorporation Evaluation; 4.7 Study Case; 5 Conclusion; References; Improving Question Answering by Commonsense-Based Pre-training
505 8 _a1 Introduction2 Tasks and Datasets; 3 Commonsense Knowledge; 4 Approach Overview; 5 Commonsense-Based Model; 6 Experiment; 6.1 Model Comparisons and Analysis; 6.2 Error Analysis and Discussion; 7 Related Work; 8 Conclusion; References; Multi-strategies Method for Cold-Start Stage Question Matching of rQA Task; 1 Introduction; 2 Related Work; 3 Methodology; 3.1 Densely-Connected Fusion Attentive Network; 3.2 Strategies; 4 Experiments; 4.1 Datasets; 4.2 Results of the DFAN Model; 4.3 Comparisons Between Strategies; 5 Analysis and Discussion; 5.1 Ablation Study on DFAN; 5.2 Effect of Data Size
505 8 _a6 Conclusion and Future WorkReferences; Multilingual Dialogue Generation with Shared-Private Memory; 1 Introduction; 2 Related Works; 2.1 Dialogue Systems; 2.2 Memory Networks; 2.3 Multi-task Learning; 3 Model; 3.1 Preliminary Background Knowledge; 3.2 Key-Value Memory Augmented Seq2Seq; 3.3 Seq2Seq with Shared-Private Memory; 4 Experimental Settings; 4.1 Datasets; 4.2 Evaluation Metrics; 4.3 Implementation Details; 4.4 Comparisons; 5 Results and Analysis; 5.1 Monolingual Models; 5.2 Multilingual Models; 5.3 Model Analysis; 6 Conclusion; References
505 8 _aLearning Personalized End-to-End Task-Oriented Dialogue Generation1 Introduction; 2 Related Work; 3 Method; 3.1 Problem Definition; 3.2 Framework Structure; 3.3 Training Objective; 4 Experimental Setup; 4.1 Experimental Data; 4.2 Model Configurations; 4.3 Baseline Methods; 4.4 Evaluation Metrics; 5 Experimental Results; 5.1 Ablation Study; 6 Conclusion and Future Work; References; SMART: A Stratified Machine Reading Test; 1 Introduction; 2 Related Work; 2.1 Related English Machine Comprehension Data Sets; 2.2 Related Chinese Machine Comprehension Data Sets; 3 Constructing the SMART Data Set
505 8 _a3.1 Source Data Preparation3.2 Stratified Question and Answer Design; 3.3 Key Statistics of the Data Set; 4 Establishing a Baseline; 5 Experiments; 6 Conclusion and Future Work; References; How Question Generation Can Help Question Answering over Knowledge Base; 1 Introduction; 2 Our Approach; 2.1 Dual Learning; 2.2 Fine Tuning; 3 Models; 3.1 QA Model; 3.2 QG Model; 4 Experiment; 4.1 Setup; 4.2 Relation Detection Results; 4.3 Comparison Results of Dual Learning; 4.4 QG Performance; 4.5 KBQA End-Task Results; 4.6 Case Study; 5 Related Work; 6 Conclusion; References
520 _aThis two-volume set of LNAI 11838 and LNAI 11839 constitutes the refereed proceedings of the 8th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2019, held in Dunhuang, China, in October 2019. The 85 full papers and 56 short papers presented were carefully reviewed and selected from 492 submissions. They are organized in the following topical sections: Conversational Bot/QA/IR; Knowledge graph/IE; Machine Learning for NLP; Machine Translation; NLP Applications; NLP for Social Network; NLP Fundamentals; Text Mining; Short Papers; Explainable AI Workshop; Student Workshop: Evaluation Workshop. --
_cProvided by publisher.
650 0 _aNatural language processing (Computer science)
_vCongresses.
_915085
650 0 _aChinese language
_xData processing
_vCongresses.
_952629
650 6 _aTraitement automatique des langues naturelles
_vCongrès.
_916594
650 6 _aChinois (Langue)
_xInformatique
_vCongrès.
_9967667
650 7 _aChinese language
_xData processing
_2fast
_952630
650 7 _aNatural language processing (Computer science)
_2fast
655 2 _aCongress
_911670
655 7 _aproceedings (reports)
_2aat
655 7 _aConference papers and proceedings
_2fast
_96065
655 7 _aConference papers and proceedings.
_2lcgft
_96065
655 7 _aActes de congrès.
_2rvmgf
_9609890
700 1 _aTang, Jie
_c(Computer scientist),
_eeditor.
_1https://id.oclc.org/worldcat/entity/E39PCjKjTj9CXt3TwpPKQq3QpX
700 1 _aKan, Min-Yen,
_eeditor.
_968429
700 1 _aZhao, Dongyan,
_eeditor.
_968430
700 1 _aLi, Sujian,
_eeditor.
_964785
700 1 _aZan, Hongying,
_eeditor.
_964786
776 0 _z3030322327
830 0 _aLecture notes in computer science.
_pLecture notes in artificial intelligence.
_914916
830 0 _aLecture notes in computer science ;
_v11838.
830 0 _aLNCS sublibrary.
_nSL 7,
_pArtificial intelligence.
_920712
856 4 0 _uhttps://link.springer.com/10.1007/978-3-030-32233-5
938 _aAskews and Holts Library Services
_bASKH
_nAH36976439
938 _aProQuest Ebook Central
_bEBLB
_nEBL5924514
994 _a92
_bATIST
999 _c646788
_d646788