| 000 | 07984cam a2200997 i 4500 | ||
|---|---|---|---|
| 001 | on1122856551 | ||
| 003 | OCoLC | ||
| 005 | 20250707092727.0 | ||
| 006 | m o d | ||
| 007 | cr un|---aucuu | ||
| 008 | 191011s2019 sz a o 101 0 eng d | ||
| 040 |
_aGW5XE _beng _erda _epn _cGW5XE _dEBLCP _dUKMGB _dOCLCQ _dDKU _dOCLCF _dOCLCO _dOCLCQ _dSFB _dLQU _dVT2 _dOCLCQ _dDCT _dHUA _dOCLCO _dUAB _dUKAHL _dNLW _dOCLCO _dOCLCQ _dOCLCO _dCOM _dOCLCO _dOCLCQ _dOCLCO _dOCLCL |
||
| 015 |
_aGBB9H2889 _2bnb |
||
| 016 | 7 |
_a019567112 _2Uk |
|
| 019 |
_a1125927818 _a1127262907 _a1135297050 _a1156182032 _a1161032084 _a1203977902 _a1203978056 _a1204057042 _a1223116807 _a1229941264 _a1243340841 _a1257373709 _a1259634136 _a1262907621 _a1264192837 |
||
| 020 |
_a9783030322335 _q(electronic bk.) |
||
| 020 |
_a3030322335 _q(electronic bk.) |
||
| 020 | _a3030322327 | ||
| 020 | _a9783030322328 | ||
| 020 |
_a9783030322342 _q(print) |
||
| 020 | _a3030322343 | ||
| 020 |
_z9783030322328 _q(print) |
||
| 024 | 7 |
_a10.1007/978-3-030-32233-5 _2doi |
|
| 024 | 8 | _a10.1007/978-3-030-32 | |
| 029 | 1 |
_aAU@ _b000066172172 |
|
| 029 | 1 |
_aAU@ _b000066210527 |
|
| 029 | 1 |
_aAU@ _b000067497203 |
|
| 029 | 1 |
_aAU@ _b000068656140 |
|
| 029 | 1 |
_aUKMGB _b019567112 |
|
| 029 | 1 |
_aDKDLA _b820120-katalog:999919254505765 |
|
| 029 | 1 |
_aAU@ _b000074075741 |
|
| 035 |
_a(OCoLC)1122856551 _z(OCoLC)1125927818 _z(OCoLC)1127262907 _z(OCoLC)1135297050 _z(OCoLC)1156182032 _z(OCoLC)1161032084 _z(OCoLC)1203977902 _z(OCoLC)1203978056 _z(OCoLC)1204057042 _z(OCoLC)1223116807 _z(OCoLC)1229941264 _z(OCoLC)1243340841 _z(OCoLC)1257373709 _z(OCoLC)1259634136 _z(OCoLC)1262907621 _z(OCoLC)1264192837 |
||
| 037 |
_acom.springer.onix.9783030322335 _bSpringer Nature |
||
| 050 | 4 |
_aQA76.9.N38 _bN572 2019eb |
|
| 072 | 7 |
_aUYQ _2bicssc |
|
| 072 | 7 |
_aCOM004000 _2bisacsh |
|
| 072 | 7 |
_aUYQ _2thema |
|
| 082 | 0 | 4 | _a006.3 |
| 049 | _aMAIN | ||
| 111 | 2 |
_aNLPCC (Conference) _n(8th : _d2019 : _cDunhuang, China) _968426 |
|
| 245 | 1 | 0 |
_aNatural language processing and Chinese computing : _b8th CCF International Conference, NLPCC 2019, Dunhuang, China, October 9-14, 2019, Proceedings. _nPart I / _cJie Tang, Min-Yen Kan, Dongyan Zhao, Sujian Li, Hongying Zan (eds.). |
| 246 | 3 | _aNLPCC 2019 | |
| 264 | 1 |
_aCham, Switzerland : _bSpringer, _c2019. |
|
| 300 |
_a1 online resource : _billustrations |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 | _atext file | ||
| 347 | _bPDF | ||
| 490 | 1 | _aLecture Notes in Artificial Intelligence | |
| 490 | 1 |
_aLecture notes in computer science ; _v11838 |
|
| 490 | 1 | _aLNCS sublibrary. SL 7, Artificial intelligence | |
| 500 | _aInternational conference proceedings. | ||
| 500 | _aIncludes author index. | ||
| 588 | 0 | _aOnline resource; title from PDF title page (SpringerLink, viewed October 11, 2019). | |
| 505 | 0 | _aIntro; Preface; Organization; Contents -- Part I; Contents -- Part II; Conversational Bot/QA/IR; Variational Attention for Commonsense Knowledge Aware Conversation Generation; 1 Introduction; 2 Related Work; 3 Model Description; 3.1 Task Definition; 3.2 Background: Knowledge Aware Framework; 3.3 Variational Attention for Knowledge Incorporation; 4 Experiments; 4.1 Data; 4.2 Settings; 4.3 Baselines; 4.4 Automatic Evaluation; 4.5 Manual Evaluation; 4.6 Extra Accurate Incorporation Evaluation; 4.7 Study Case; 5 Conclusion; References; Improving Question Answering by Commonsense-Based Pre-training | |
| 505 | 8 | _a1 Introduction2 Tasks and Datasets; 3 Commonsense Knowledge; 4 Approach Overview; 5 Commonsense-Based Model; 6 Experiment; 6.1 Model Comparisons and Analysis; 6.2 Error Analysis and Discussion; 7 Related Work; 8 Conclusion; References; Multi-strategies Method for Cold-Start Stage Question Matching of rQA Task; 1 Introduction; 2 Related Work; 3 Methodology; 3.1 Densely-Connected Fusion Attentive Network; 3.2 Strategies; 4 Experiments; 4.1 Datasets; 4.2 Results of the DFAN Model; 4.3 Comparisons Between Strategies; 5 Analysis and Discussion; 5.1 Ablation Study on DFAN; 5.2 Effect of Data Size | |
| 505 | 8 | _a6 Conclusion and Future WorkReferences; Multilingual Dialogue Generation with Shared-Private Memory; 1 Introduction; 2 Related Works; 2.1 Dialogue Systems; 2.2 Memory Networks; 2.3 Multi-task Learning; 3 Model; 3.1 Preliminary Background Knowledge; 3.2 Key-Value Memory Augmented Seq2Seq; 3.3 Seq2Seq with Shared-Private Memory; 4 Experimental Settings; 4.1 Datasets; 4.2 Evaluation Metrics; 4.3 Implementation Details; 4.4 Comparisons; 5 Results and Analysis; 5.1 Monolingual Models; 5.2 Multilingual Models; 5.3 Model Analysis; 6 Conclusion; References | |
| 505 | 8 | _aLearning Personalized End-to-End Task-Oriented Dialogue Generation1 Introduction; 2 Related Work; 3 Method; 3.1 Problem Definition; 3.2 Framework Structure; 3.3 Training Objective; 4 Experimental Setup; 4.1 Experimental Data; 4.2 Model Configurations; 4.3 Baseline Methods; 4.4 Evaluation Metrics; 5 Experimental Results; 5.1 Ablation Study; 6 Conclusion and Future Work; References; SMART: A Stratified Machine Reading Test; 1 Introduction; 2 Related Work; 2.1 Related English Machine Comprehension Data Sets; 2.2 Related Chinese Machine Comprehension Data Sets; 3 Constructing the SMART Data Set | |
| 505 | 8 | _a3.1 Source Data Preparation3.2 Stratified Question and Answer Design; 3.3 Key Statistics of the Data Set; 4 Establishing a Baseline; 5 Experiments; 6 Conclusion and Future Work; References; How Question Generation Can Help Question Answering over Knowledge Base; 1 Introduction; 2 Our Approach; 2.1 Dual Learning; 2.2 Fine Tuning; 3 Models; 3.1 QA Model; 3.2 QG Model; 4 Experiment; 4.1 Setup; 4.2 Relation Detection Results; 4.3 Comparison Results of Dual Learning; 4.4 QG Performance; 4.5 KBQA End-Task Results; 4.6 Case Study; 5 Related Work; 6 Conclusion; References | |
| 520 |
_aThis two-volume set of LNAI 11838 and LNAI 11839 constitutes the refereed proceedings of the 8th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2019, held in Dunhuang, China, in October 2019. The 85 full papers and 56 short papers presented were carefully reviewed and selected from 492 submissions. They are organized in the following topical sections: Conversational Bot/QA/IR; Knowledge graph/IE; Machine Learning for NLP; Machine Translation; NLP Applications; NLP for Social Network; NLP Fundamentals; Text Mining; Short Papers; Explainable AI Workshop; Student Workshop: Evaluation Workshop. -- _cProvided by publisher. |
||
| 650 | 0 |
_aNatural language processing (Computer science) _vCongresses. _915085 |
|
| 650 | 0 |
_aChinese language _xData processing _vCongresses. _952629 |
|
| 650 | 6 |
_aTraitement automatique des langues naturelles _vCongrès. _916594 |
|
| 650 | 6 |
_aChinois (Langue) _xInformatique _vCongrès. _9967667 |
|
| 650 | 7 |
_aChinese language _xData processing _2fast _952630 |
|
| 650 | 7 |
_aNatural language processing (Computer science) _2fast |
|
| 655 | 2 |
_aCongress _911670 |
|
| 655 | 7 |
_aproceedings (reports) _2aat |
|
| 655 | 7 |
_aConference papers and proceedings _2fast _96065 |
|
| 655 | 7 |
_aConference papers and proceedings. _2lcgft _96065 |
|
| 655 | 7 |
_aActes de congrès. _2rvmgf _9609890 |
|
| 700 | 1 |
_aTang, Jie _c(Computer scientist), _eeditor. _1https://id.oclc.org/worldcat/entity/E39PCjKjTj9CXt3TwpPKQq3QpX |
|
| 700 | 1 |
_aKan, Min-Yen, _eeditor. _968429 |
|
| 700 | 1 |
_aZhao, Dongyan, _eeditor. _968430 |
|
| 700 | 1 |
_aLi, Sujian, _eeditor. _964785 |
|
| 700 | 1 |
_aZan, Hongying, _eeditor. _964786 |
|
| 776 | 0 | _z3030322327 | |
| 830 | 0 |
_aLecture notes in computer science. _pLecture notes in artificial intelligence. _914916 |
|
| 830 | 0 |
_aLecture notes in computer science ; _v11838. |
|
| 830 | 0 |
_aLNCS sublibrary. _nSL 7, _pArtificial intelligence. _920712 |
|
| 856 | 4 | 0 | _uhttps://link.springer.com/10.1007/978-3-030-32233-5 |
| 938 |
_aAskews and Holts Library Services _bASKH _nAH36976439 |
||
| 938 |
_aProQuest Ebook Central _bEBLB _nEBL5924514 |
||
| 994 |
_a92 _bATIST |
||
| 999 |
_c646788 _d646788 |
||