000 05995cam a2200829 a 4500
001 ocn676698721
003 OCoLC
005 20250703114428.0
006 m o d
007 cr cn|||||||||
008 101101s2010 gw a ob 001 0 eng d
040 _aGW5XE
_beng
_epn
_cGW5XE
_dOUN
_dCEF
_dHNK
_dQE2
_dOCLCQ
_dSPLNP
_dOCLCQ
_dSNK
_dE7B
_dCOO
_dOCLCQ
_dCOF
_dOCLCQ
_dOCLCF
_dBEDGE
_dIXA
_dYDXCP
_dIDEBK
_dEBLCP
_dOCLCQ
_dVT2
_dOCLCQ
_dUAB
_dIOG
_dOCLCQ
_dU3W
_dAU@
_dWYU
_dOCLCQ
_dW2U
_dOCLCQ
_dERF
_dOCLCQ
_dUKAHL
_dDCT
_dOCLCQ
_dOCLCO
_dOCLCQ
_dOCLCO
_dOCLCQ
_dOCLCL
_dOCLCQ
_dUKKRT
016 7 _a1002586755
_2DE-101
019 _a670293476
_a680622706
_a681875323
_a771177705
_a793325387
_a817074309
_a964912749
_a1005762187
_a1048144081
_a1050963452
_a1058901911
_a1066641172
_a1066687505
_a1069638391
_a1087025266
_a1112598054
_a1204088567
_a1256317270
020 _a9783642132902
020 _a3642132901
020 _a3642132898
020 _a9783642132896
020 _a1280382120
020 _a9781280382123
020 _a9786613560032
020 _a6613560030
020 _z9783642132896
024 7 _a10.1007/978-3-642-13290-2
_2doi
029 1 _aAU@
_b000048697363
029 1 _aAU@
_b000051330055
029 1 _aAU@
_b000058346717
029 1 _aNLGGC
_b384162398
029 1 _aNZ1
_b13533515
029 1 _aDKDLA
_b820120-katalog:999904786105765
035 _a(OCoLC)676698721
_z(OCoLC)670293476
_z(OCoLC)680622706
_z(OCoLC)681875323
_z(OCoLC)771177705
_z(OCoLC)793325387
_z(OCoLC)817074309
_z(OCoLC)964912749
_z(OCoLC)1005762187
_z(OCoLC)1048144081
_z(OCoLC)1050963452
_z(OCoLC)1058901911
_z(OCoLC)1066641172
_z(OCoLC)1066687505
_z(OCoLC)1069638391
_z(OCoLC)1087025266
_z(OCoLC)1112598054
_z(OCoLC)1204088567
_z(OCoLC)1256317270
037 _a978-3-642-13289-6
_bSpringer
_nhttp://www.springerlink.com
050 4 _aQC793.3.S6
_bP37 2010
072 7 _aPHQ
_2bicssc
072 7 _aSCI057000
_2bisacsh
082 0 4 _a539.7/25
_222
049 _aMAIN
100 1 _aParkinson, John B.
_913716
245 1 3 _aAn introduction to quantum spin systems /
_cJohn B. Parkinson, Damian J.J. Farnell.
260 _aBerlin ;
_aNew York :
_bSpringer,
_c©2010.
300 _a1 online resource (xi, 154 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
347 _bPDF
490 1 _aLecture notes in physics,
_x1616-6361 ;
_v816
520 8 _aAnnotation
_bThe topic of lattice quantum spin systems is a fascinating and by nowwell-established branch of theoretical physics. However, many important questions remain to be answered. Their intrinsically quantum mechanical nature and the large (usually effectively infinite) number of spins in macroscopic materials often leads to unexpected or counter-intuitive results and insights. Spin systems are not only the basic models for a whole host of magnetic materials but they are also important as prototypical models of quantum systems. Low dimensional systems (as treated in this primer), in 2D and especially 1D, have been particularly fruitful because their simplicity has enabled exact solutions to be determined in many cases. These exact solutions contain many highly nontrivial features. This book was inspired by a set of lectures on quantum spin systems and it is set at a level of practical detail that is missing in other textbooks in the area. It will guide the reader through the foundations of the field. In particular, the solutions of the Heisenberg and XY models at zero temperature using the Bethe Ansatz and the Jordan-Wigner transformation are covered in some detail. The use of approximate methods, both theoretical and numerical, to tackle more advanced topics is considered. The final chapter describes some very recent applications of approximate methods in order to show some of the directions in which the study of these systems is currently developing.
504 _aIncludes bibliographical references and index.
505 0 0 _gNote continued:
_g10.3.1.
_tLSUB2 Approximation for the Spin-Half, Square-Lattice XXZ-Model for the z-Aligned Model State --
_g10.3.2.
_tSUB2 Approximation for the Spin-Half, Square-Lattice XXZ-Model of the z-Aligned Model State --
_g10.3.3.
_tHigh-Order CCM Calculations Using a Computational Approach --
_g10.3.4.
_tExcitation Spectrum of the Spin-Half Square-Lattice XXZ-Model for the z-Aligned Model State --
_g10.4.
_tLattice Magnetisation --
_tReferences --
_g11.
_tQuantum Magnetism --
_g11.1.
_tIntroduction --
_g11.2.
_tOne-Dimensional Models --
_g11.2.1.
_tSpin-Half J1-J2 Model on the Linear Chain --
_g11.2.2.
_ts -- 1 Heisenberg Model on the Linear Chain --
_g11.2.3.
_ts = 1 Heisenberg-Biquadratic Model on the Linear Chain --
_g11.3.
_ts = 1/2 Heisenberg Model for Archimedean Lattices --
_g11.4.
_tSpin Plateaux --
_g11.5.
_tSpin-Half J1-J2 Model on the Square Lattice --
_g11.6.
_tShastry-Sutherland Antiferromagnet --
_g11.7.
_tConclusions --
_tReferences.
588 0 _aPrint version record.
546 _aEnglish.
650 0 _aNuclear spin.
_98733
650 0 _aQuantum theory.
_91028
650 2 _aQuantum Theory
_91028
650 6 _aSpin.
_94698
650 6 _aThéorie quantique.
_98741
650 7 _aPhysique.
_2eclas
650 7 _aNuclear spin
_2fast
_98733
650 7 _aQuantum theory
_2fast
_91028
700 1 _aFarnell, Damian J. J.
_913718
776 0 8 _iPrint version:
_aParkinson, John B.
_tIntroduction to quantum spin systems.
_dBerlin : Springer, 2010
_z9783642132896
_w(OCoLC)646113708
830 0 _aLecture notes in physics ;
_v816.
_x0075-8450
856 4 0 _uhttps://link-springer-com.libraryproxy.ist.ac.at/10.1007/978-3-642-13290-2
938 _aKortext
_bKTXT
_n1456294
938 _aAskews and Holts Library Services
_bASKH
_nAH26901596
938 _aProQuest Ebook Central
_bEBLB
_nEBL3065708
938 _aebrary
_bEBRY
_nebr10411968
938 _aProQuest MyiLibrary Digital eBook Collection
_bIDEB
_n356003
938 _aYBP Library Services
_bYANK
_n3481254
994 _a92
_bATIST
999 _c647923
_d647923