| 000 | 05266cam a2200733 i 4500 | ||
|---|---|---|---|
| 001 | on1415843477 | ||
| 003 | OCoLC | ||
| 005 | 20250707095432.0 | ||
| 006 | m o d | ||
| 007 | cr |n||||||||| | ||
| 008 | 231223s2023 sz a o 101 0 eng d | ||
| 040 |
_aYDX _beng _erda _cYDX _dGW5XE _dEBLCP _dOCLCO _dOCLCQ _dOCLCO |
||
| 019 | _a1415896671 | ||
| 020 |
_a9783031498961 _q(electronic bk.) |
||
| 020 |
_a3031498968 _q(electronic bk.) |
||
| 020 | _z9783031498954 | ||
| 020 | _z303149895X | ||
| 024 | 7 |
_a10.1007/978-3-031-49896-1 _2doi |
|
| 029 | 1 |
_aAU@ _b000075655775 |
|
| 035 |
_a(OCoLC)1415843477 _z(OCoLC)1415896671 |
||
| 050 | 4 | _aQ325.5 | |
| 072 | 7 |
_aUYQ _2bicssc |
|
| 072 | 7 |
_aCOM004000 _2bisacsh |
|
| 072 | 7 |
_aUYQ _2thema |
|
| 082 | 0 | 4 |
_a006.3/1 _223/eng/20240102 |
| 049 | _aMAIN | ||
| 111 | 2 |
_aAALTD (Workshop) _n(8th : _d2023 : _cTurin, Italy). _9979346 |
|
| 245 | 1 | 0 |
_aAdvanced analytics and learning on temporal data : _b8th ECML PKDD Workshop, AALTD 2023, Turin, Italy, September 18-22, 2023 : revised selected papers / _cGeorgiana Ifrim, Romain Tavenard, Anthony Bagnall, Patrick Schaefer, Simon Malinowski, Thomas Guyet, Vincent Lemaire, editors. |
| 246 | 3 | 0 | _a8th ECML PKDD Workshop, AALTD 2023 |
| 264 | 1 |
_aCham : _bSpringer, _c[2023] |
|
| 264 | 4 | _c©2023 | |
| 300 |
_a1 online resource (xiii, 308 pages) : _billustrations (chiefly color). |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 490 | 1 |
_aLecture notes in computer science. Lecture notes in artificial intelligence, _x2945-9141 ; _v14343 |
|
| 490 | 1 | _aLNCS sublibrary: SL7 - Artificial intelligence | |
| 500 | _aSelected conference proceedings. | ||
| 500 | _aIncludes author index. | ||
| 520 | _aThis volume LNCS 14343 constitutes the refereed proceedings of the 8th ECML PKDD Workshop, AALTD 2023, in Turin, Italy, in September 2023. The 20 full papers were carefully reviewed and selected from 28 submissions. They are organized in the following topical section as follows: Machine Learning; Data Mining; Pattern Analysis; Statistics to Share their Challenges and Advances in Temporal Data Analysis. . | ||
| 505 | 0 | _aHuman Activity Segmentation Challenge -- Human Activity Segmentation Challenge@ECML/PKDD⁰́₉23 -- Change points detection in multivariate signal applied to human activity segmentation -- Change Point Detection via Synthetic Signals -- Oral Presentation -- Clustering time series with k-medoids based algorithms -- Explainable Parallel RCNN with Novel Feature Representation for Time Series Forecasting -- RED CoMETS: an ensemble classifier for symbolically represented multivariate time series -- Deep Long Term Prediction for Semantic Segmentation in Autonomous Driving -- Extracting Features from Random Subseries: A Hybrid Pipeline for Time Series Classification and Extrinsic Regression -- ShapeDBA: Generating Effective Time Series Prototypes using ShapeDTW Barycenter Averaging -- Poster Presentation -- Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks -- Evaluating Explanation Methods for Multivariate Time Series Classification -- tGLAD: A sparse graph recovery based approach for multivariate time series segmentation -- Designing a New Search Space for Multivariate Time-Series Neural Architecture Search -- Back to Basics: A Sanity Check on Modern Time Series Classification Algorithms -- Do Cows Have Fingerprints? Using Time Series Techniques and Milk Flow Profiles to Characterise Cow Behaviours and Detect Health Issues -- Exploiting Context and Attention with Recurrent Neural Network for Sensor Time Series Prediction -- Rail Crack Propagation Forecasting Using Multi-horizons RNNs -- Electricity Load and Peak Forecasting: Feature Engineering, Probabilistic LightGBM and Temporal Hierarchies -- Time-aware Predictions of Moments of Change in Longitudinal User Posts on Social Media. | |
| 588 | 0 | _aOnline resource; title from PDF title page (SpringerLink, viewed January 2, 2024). | |
| 650 | 0 |
_aMachine learning _vCongresses. _915308 |
|
| 650 | 6 |
_aApprentissage automatique _vCongrès. _920183 |
|
| 655 | 7 |
_aproceedings (reports) _2aat |
|
| 655 | 7 |
_aConference papers and proceedings. _2lcgft _96065 |
|
| 655 | 7 |
_aActes de congrès. _2rvmgf _9609890 |
|
| 700 | 1 |
_aIfrim, Georgiana, _eeditor. _966579 |
|
| 700 | 1 |
_aTavenard, Romain, _eeditor. _969296 |
|
| 700 | 1 |
_aBagnall, Anthony, _eeditor. _969293 |
|
| 700 | 1 |
_aSchaefer, Patrick, _eeditor. _9979347 |
|
| 700 | 1 |
_aMalinowski, Simon, _eeditor. _969292 |
|
| 700 | 1 |
_aGuyet, Thomas, _eeditor. _969295 |
|
| 700 | 1 |
_aLemaire, Vincent _c(Computer scientist), _eeditor. _9914821 |
|
| 711 | 2 |
_aECML PKDD (Conference) _d(2023 : _cTurin, Italy) |
|
| 776 | 0 | 8 |
_cOriginal _z303149895X _z9783031498954 _w(OCoLC)1407212676 |
| 830 | 0 |
_aLecture notes in computer science. _pLecture notes in artificial intelligence. _x2945-9141 _914916 |
|
| 830 | 0 |
_aLecture notes in computer science ; _v14343. |
|
| 830 | 0 |
_aLNCS sublibrary. _nSL 7, _pArtificial intelligence. _920712 |
|
| 856 | 4 | 0 | _uhttps://link.springer.com/10.1007/978-3-031-49896-1 |
| 938 |
_aYBP Library Services _bYANK _n305907180 |
||
| 938 |
_aProQuest Ebook Central _bEBLB _nEBL31027990 |
||
| 994 |
_a92 _bATIST |
||
| 999 |
_c657913 _d657913 |
||