| 000 | 06860cam a2200745Ia 4500 | ||
|---|---|---|---|
| 001 | ocn268966013 | ||
| 003 | OCoLC | ||
| 005 | 20240925133126.0 | ||
| 006 | m d | ||
| 007 | cr cnu---unuuu | ||
| 008 | 081105s2001 si ob 001 0 eng d | ||
| 040 |
_aN$T _beng _epn _cN$T _dOCLCQ _dUBY _dIDEBK _dE7B _dOCLCQ _dOCLCF _dDKDLA _dOCLCQ _dNLGGC _dOCLCO _dYDXCP _dEBLCP _dDEBSZ _dOCLCO _dOCLCQ _dOCLCO |
||
| 019 |
_a505144461 _a646769031 _a764502850 _a879074242 |
||
| 020 |
_a9789812810540 _q(electronic bk.) |
||
| 020 |
_a9812810544 _q(electronic bk.) |
||
| 020 | _z9789810243852 | ||
| 020 |
_z9810243855 _q(alk. paper) |
||
| 035 |
_a(OCoLC)268966013 _z(OCoLC)505144461 _z(OCoLC)646769031 _z(OCoLC)764502850 _z(OCoLC)879074242 |
||
| 050 | 4 |
_aTA342 _b.M35 2001eb |
|
| 072 | 7 |
_aTEC _x009000 _2bisacsh |
|
| 072 | 7 |
_aTEC _x035000 _2bisacsh |
|
| 082 | 0 | 4 |
_a620/.001/5118 _222 |
| 049 | _aMAIN | ||
| 100 | 1 |
_aMamontov, Yevgeny, _d1955- _9434859 |
|
| 245 | 1 | 0 |
_aHigh-dimensional nonlinear diffusion stochastic processes _h[electronic resource] : _bmodelling for engineering applications / _cYevgeny Mamontov, Magnus Willander. |
| 260 |
_aSingapore ; _aRiver Edge, NJ : _bWorld Scientific, _c2001. |
||
| 300 | _a1 online resource (xviii, 297 pages). | ||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 490 | 1 |
_aSeries on advances in mathematics for applied sciences ; _vv. 56 |
|
| 504 | _aIncludes bibliographical references (and index. | ||
| 588 | 0 | _aPrint version record. | |
| 520 | 8 | _aAnnotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations. The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided. | |
| 505 | 0 | _aPreface; Contents; Chapter 1 Introductory Chapter; 1.1 Prerequisites for Reading; 1.2 Random Variable. Stochastic Process. Random Field. High-Dimensional Process. One-Point Process; 1.3 Two-Point Process. Expectation. Markov Process. Example of Non-Markov Process Associated with Multidimensional Markov Process; 1.4 Preceding Subsequent and Transition Probability Densities. The Chapman-Kolmogorov Equation. Initial Condition for Markov Process; 1.4.1 The Chapman-Kolmogorov equation; 1.4.2 Initial condition for Markov process. | |
| 505 | 8 | _a1.5 Homogeneous Markov Process. Example of Markov Process: The Wiener Process1.6 Expectation Variance and Standard Deviations of Markov Process; 1.7 Invariant and Stationary Markov Processes. Covariance. Spectral Densities; 1.8 Diffusion Process; 1.9 Example of Diffusion Processes: Solutions of Ito's Stochastic Ordinary Differential Equation; 1.10 The Kolmogorov Backward Equation; 1.11 Figures of Merit. Diffusion Modelling of High-Dimensional Systems; 1.12 Common Analytical Techniques to Determine Probability Densities of Diffusion Processes. The Kolmogorov Forward Equation. | |
| 505 | 8 | _a1.12.1 Probability density1.12.2 Invariant probability density; 1.12.3 Stationary probability density; 1.13 The Purpose and Content of This Book; Chapter 2 Diffusion Processes; 2.1 Introduction; 2.2 Time-Derivatives of Expectation and Variance; 2.3 Ordinary Differential Equation Systems for Expectation; 2.3.1 The first-order system; 2.3.2 The second-order system; 2.3.3 Systems of the higher orders; 2.4 Models for Noise-Induced Phenomena in Expectation; 2.4.1 The case of stochastic resonance; 2.4.2 Practically efficient implementation of the second-order system. | |
| 505 | 8 | _a2.5 Ordinary Differential Equation System for Variance2.5.1 Damping matrix; 2.5.2 The uncorrelated-matrixes approximation; 2.5.3 Nonlinearity of the drift function; 2.5.4 Fundamental limitation of the state-space-independent approximations for the diffusion and damping matrixes; 2.6 The Steady-State Approximation for The Probability Density; Chapter 3 Invariant Diffusion Processes; 3.1 Introduction; 3.2 Preliminary Remarks; 3.3 Expectation. The Finite-Equation Method; 3.4 Explicit Expression for Variance; 3.5 The Simplified Detailed-Balance Approximation for Invariant Probability Density. | |
| 505 | 8 | _a3.5.1 Partial differential equation for logarithm of the density3.5.2 Truncated equation for the logarithm and the detailed-balance equation; 3.5.3 Case of the detailed balance; 3.5.4 The detailed-balance approximation; 3.5.5 The simplified detailed-balance approximation. Theorem on the approximating density; 3.6 Analytical-Numerical Approach to Non-Invariant and Invariant Diffusion Processes; 3.6.1 Choice of the bounded domain of the integration; 3.6.2 Evaluation of the multifold integrals. The Monte Carlo technique; 3.6.3 Summary of the approach; 3.7 Discussion. | |
| 650 | 0 |
_aEngineering _xMathematical models. _945759 |
|
| 650 | 0 |
_aStochastic processes. _91109 |
|
| 650 | 0 |
_aDiffusion processes. _970248 |
|
| 650 | 0 |
_aDifferential equations, Nonlinear. _95321 |
|
| 650 | 6 |
_aIngénierie _xModèles mathématiques. _9434860 |
|
| 650 | 6 |
_aProcessus stochastiques. _911127 |
|
| 650 | 6 | _aProcessus de diffusion. | |
| 650 | 6 |
_aÉquations différentielles non linéaires. _911406 |
|
| 650 | 7 |
_aTECHNOLOGY & ENGINEERING _xEngineering (General) _2bisacsh _927299 |
|
| 650 | 7 |
_aTECHNOLOGY & ENGINEERING _xReference. _2bisacsh _927300 |
|
| 650 | 7 |
_aDifferential equations, Nonlinear. _2fast _0(OCoLC)fst00893474 _95321 |
|
| 650 | 7 |
_aDiffusion processes. _2fast _0(OCoLC)fst00893561 _970248 |
|
| 650 | 7 |
_aEngineering _xMathematical models. _2fast _0(OCoLC)fst00910373 _945759 |
|
| 650 | 7 |
_aStochastic processes. _2fast _0(OCoLC)fst01133519 _91109 |
|
| 655 | 4 |
_aElectronic books. _9396 |
|
| 655 | 0 |
_aElectronic books. _9396 |
|
| 700 | 1 |
_aWillander, M. _9115955 |
|
| 776 | 0 | 8 |
_iPrint version: _aMamontov, Yevgeny, 1955- _tHigh-dimensional nonlinear diffusion stochastic processes. _dSingapore ; River Edge, NJ : World Scientific, 2001 _z9810243855 _z9789810243852 _w(DLC) 00053437 _w(OCoLC)45283225 |
| 830 | 0 |
_aSeries on advances in mathematics for applied sciences ; _vv. 56. _9386502 |
|
| 856 | 4 | 0 |
_3EBSCOhost _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235902 |
| 938 |
_aEBL - Ebook Library _bEBLB _nEBL1679503 |
||
| 938 |
_aebrary _bEBRY _nebr10255985 |
||
| 938 |
_aEBSCOhost _bEBSC _n235902 |
||
| 938 |
_aYBP Library Services _bYANK _n2915223 |
||
| 994 |
_a92 _bN$T |
||
| 999 |
_c701881 _d701881 |
||