| 000 | 08248cam a2202029 a 4500 | ||
|---|---|---|---|
| 001 | ocn887499708 | ||
| 003 | OCoLC | ||
| 005 | 20240925134512.0 | ||
| 006 | m d | ||
| 007 | cr cnu---unuuu | ||
| 008 | 140816s1998 nju ob 001 0 eng d | ||
| 010 | _z 98024386 | ||
| 040 |
_aEBLCP _beng _epn _cEBLCP _dIDEBK _dN$T _dE7B _dOCLCQ _dDEBSZ _dJSTOR _dOCLCF _dYDXCP _dDEBBG _dOCLCQ _dCOO _dOCLCQ _dAZK _dUIU _dAGLDB _dMOR _dCCO _dJBG _dPIFAG _dZCU _dMERUC _dOCLCQ _dIOG _dDEGRU _dU3W _dEZ9 _dOCLCQ _dSTF _dWRM _dVTS _dINT _dVT2 _dOCLCQ _dWYU _dLVT _dTKN _dOCLCQ _dLEAUB _dDKC _dAU@ _dOCLCQ _dM8D _dOCLCQ _dAJS _dUIU _dOCLCO _dQGK _dOCLCQ _dOCLCO _dINARC |
||
| 066 | _c(Q | ||
| 019 |
_a961582016 _a962702199 _a992890386 _a1055401436 _a1066509031 _a1228574172 _a1241872842 _a1259188956 _a1412549386 |
||
| 020 |
_a9781400865185 _q(electronic bk.) |
||
| 020 |
_a1400865182 _q(electronic bk.) |
||
| 020 | _z9780691002583 | ||
| 020 | _a0691002576 | ||
| 020 | _a9780691002576 | ||
| 020 | _a0691002584 | ||
| 020 | _a9780691002583 | ||
| 024 | 7 |
_a10.1515/9781400865185 _2doi |
|
| 035 |
_a818439 _b(N$T) |
||
| 035 |
_a(OCoLC)887499708 _z(OCoLC)961582016 _z(OCoLC)962702199 _z(OCoLC)992890386 _z(OCoLC)1055401436 _z(OCoLC)1066509031 _z(OCoLC)1228574172 _z(OCoLC)1241872842 _z(OCoLC)1259188956 _z(OCoLC)1412549386 |
||
| 037 |
_a22573/ctt7680c7 _bJSTOR |
||
| 050 | 4 |
_aQA614.58 _b.G73 1998eb |
|
| 072 | 7 |
_aMAT _x012000 _2bisacsh |
|
| 072 | 7 |
_aMAT040000 _2bisacsh |
|
| 072 | 7 |
_aMAT012040 _2bisacsh |
|
| 082 | 0 | 4 |
_a516.362 _223 |
| 049 | _aMAIN | ||
| 100 | 1 |
_aGraczyk, Jacek. _9755086 |
|
| 245 | 1 | 4 |
_aThe real Fatou conjecture / _cby Jacek Graczyk and Grzegorz Świa̧tek. |
| 260 |
_aPrinceton, N.J. : _bPrinceton University Press, _c1998. |
||
| 300 | _a1 online resource | ||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 490 | 1 |
_aAnnals of mathematics studies ; _vnumber144 |
|
| 504 | _aIncludes bibliographical references and index. | ||
| 520 | _aIn 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students | ||
| 588 | 0 | _aPrint version record. | |
| 505 | 0 | 0 |
_tFrontmatter -- _tContents -- _tChapter 1. Review of Concepts -- _tChapter 2. Quasiconformal Gluing -- _tChapter 3. Polynomial-Like Property -- _tChapter 4. Linear Growth of Moduli -- _tChapter 5. Quasi conformal Techniques -- _tBibliography -- _tIndex. |
| 546 | _aIn English. | ||
| 590 | _aAdded to collection customer.56279.3 | ||
| 650 | 0 |
_aGeodesics (Mathematics) _978738 |
|
| 650 | 0 |
_aMappings (Mathematics) _912840 |
|
| 650 | 0 |
_aPolynomials. _94540 |
|
| 650 | 4 |
_aMathematik. _93445 |
|
| 650 | 6 |
_aGéodésiques (Mathématiques) _9969846 |
|
| 650 | 6 |
_aApplications (Mathématiques) _912842 |
|
| 650 | 6 |
_aPolynômes. _971113 |
|
| 650 | 7 |
_aMATHEMATICS _xGeometry _xGeneral. _2bisacsh _918134 |
|
| 650 | 7 |
_aMATHEMATICS _xComplex Analysis. _2bisacsh _9112173 |
|
| 650 | 7 |
_aGeodesics (Mathematics) _2fast _978738 |
|
| 650 | 7 |
_aMappings (Mathematics) _2fast _912840 |
|
| 650 | 7 |
_aPolynomials _2fast _94540 |
|
| 653 | _aAbsolute value. | ||
| 653 | _aAffine transformation. | ||
| 653 | _aAlgebraic function. | ||
| 653 | _aAnalytic continuation. | ||
| 653 | _aAnalytic function. | ||
| 653 | _aArithmetic. | ||
| 653 | _aAutomorphism. | ||
| 653 | _aBig O notation. | ||
| 653 | _aBounded set (topological vector space) | ||
| 653 | _aC0. | ||
| 653 | _aCalculation. | ||
| 653 | _aCanonical map. | ||
| 653 | _aChange of variables. | ||
| 653 | _aChebyshev polynomials. | ||
| 653 | _aCombinatorics. | ||
| 653 | _aCommutative property. | ||
| 653 | _aComplex number. | ||
| 653 | _aComplex plane. | ||
| 653 | _aComplex quadratic polynomial. | ||
| 653 | _aConformal map. | ||
| 653 | _aConjecture. | ||
| 653 | _aConjugacy class. | ||
| 653 | _aConjugate points. | ||
| 653 | _aConnected component (graph theory) | ||
| 653 | _aConnected space. | ||
| 653 | _aContinuous function. | ||
| 653 | _aCorollary. | ||
| 653 | _aCovering space. | ||
| 653 | _aCritical point (mathematics) | ||
| 653 | _aDense set. | ||
| 653 | _aDerivative. | ||
| 653 | _aDiffeomorphism. | ||
| 653 | _aDimension. | ||
| 653 | _aDisjoint sets. | ||
| 653 | _aDisjoint union. | ||
| 653 | _aDisk (mathematics) | ||
| 653 | _aEquicontinuity. | ||
| 653 | _aEstimation. | ||
| 653 | _aExistential quantification. | ||
| 653 | _aFibonacci. | ||
| 653 | _aFunctional equation. | ||
| 653 | _aFundamental domain. | ||
| 653 | _aGeneralization. | ||
| 653 | _aGreat-circle distance. | ||
| 653 | _aHausdorff distance. | ||
| 653 | _aHolomorphic function. | ||
| 653 | _aHomeomorphism. | ||
| 653 | _aHomotopy. | ||
| 653 | _aHyperbolic function. | ||
| 653 | _aImaginary number. | ||
| 653 | _aImplicit function theorem. | ||
| 653 | _aInjective function. | ||
| 653 | _aInteger. | ||
| 653 | _aIntermediate value theorem. | ||
| 653 | _aInterval (mathematics) | ||
| 653 | _aInverse function. | ||
| 653 | _aIrreducible polynomial. | ||
| 653 | _aIteration. | ||
| 653 | _aJordan curve theorem. | ||
| 653 | _aJulia set. | ||
| 653 | _aLimit of a sequence. | ||
| 653 | _aLinear map. | ||
| 653 | _aLocal diffeomorphism. | ||
| 653 | _aMathematical induction. | ||
| 653 | _aMathematical proof. | ||
| 653 | _aMaxima and minima. | ||
| 653 | _aMeromorphic function. | ||
| 653 | _aModuli (physics) | ||
| 653 | _aMonomial. | ||
| 653 | _aMonotonic function. | ||
| 653 | _aNatural number. | ||
| 653 | _aNeighbourhood (mathematics) | ||
| 653 | _aOpen set. | ||
| 653 | _aParameter. | ||
| 653 | _aPeriodic function. | ||
| 653 | _aPeriodic point. | ||
| 653 | _aPhase space. | ||
| 653 | _aPoint at infinity. | ||
| 653 | _aPolynomial. | ||
| 653 | _aProjection (mathematics) | ||
| 653 | _aQuadratic function. | ||
| 653 | _aQuadratic. | ||
| 653 | _aQuasiconformal mapping. | ||
| 653 | _aRenormalization. | ||
| 653 | _aRiemann sphere. | ||
| 653 | _aRiemann surface. | ||
| 653 | _aSchwarzian derivative. | ||
| 653 | _aScientific notation. | ||
| 653 | _aSubsequence. | ||
| 653 | _aTheorem. | ||
| 653 | _aTheory. | ||
| 653 | _aTopological conjugacy. | ||
| 653 | _aTopological entropy. | ||
| 653 | _aTopology. | ||
| 653 | _aUnion (set theory) | ||
| 653 | _aUnit circle. | ||
| 653 | _aUnit disk. | ||
| 653 | _aUpper and lower bounds. | ||
| 653 | _aUpper half-plane. | ||
| 653 | _aZ0. | ||
| 700 | 1 |
_aŚwia̧tek, Grzegorz, _d1964- _eauthor. _9755087 |
|
| 776 | 0 | 8 |
_iPrint version: _aGraczyk, Jacek. _tReal Fatou conjecture. _dPrinceton, N.J. : Princeton University Press, 1998 _z9780691002576 |
| 830 | 0 |
_aAnnals of mathematics studies ; _vno. 144. _9220295 |
|
| 856 | 4 | 0 |
_3EBSCOhost _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818439 |
| 880 | 1 | 4 |
_6245-00/(Q _aThe real Fatou conjecture / _cby Jacek Graczyk and Grzegorz ́Swi©ѕtek. |
| 938 |
_aYBP Library Services _bYANK _n12033124 |
||
| 938 |
_aProQuest MyiLibrary Digital eBook Collection _bIDEB _ncis28840351 |
||
| 938 |
_aEBSCOhost _bEBSC _n818439 |
||
| 938 |
_aebrary _bEBRY _nebr10907682 |
||
| 938 |
_aProQuest Ebook Central _bEBLB _nEBL1756204 |
||
| 938 |
_aDe Gruyter _bDEGR _n9781400865185 |
||
| 938 |
_aInternet Archive _bINAR _nrealfatouconject0000grac |
||
| 994 |
_a92 _bN$T |
||
| 999 |
_c703777 _d703777 |
||