000 08248cam a2202029 a 4500
001 ocn887499708
003 OCoLC
005 20240925134512.0
006 m d
007 cr cnu---unuuu
008 140816s1998 nju ob 001 0 eng d
010 _z 98024386
040 _aEBLCP
_beng
_epn
_cEBLCP
_dIDEBK
_dN$T
_dE7B
_dOCLCQ
_dDEBSZ
_dJSTOR
_dOCLCF
_dYDXCP
_dDEBBG
_dOCLCQ
_dCOO
_dOCLCQ
_dAZK
_dUIU
_dAGLDB
_dMOR
_dCCO
_dJBG
_dPIFAG
_dZCU
_dMERUC
_dOCLCQ
_dIOG
_dDEGRU
_dU3W
_dEZ9
_dOCLCQ
_dSTF
_dWRM
_dVTS
_dINT
_dVT2
_dOCLCQ
_dWYU
_dLVT
_dTKN
_dOCLCQ
_dLEAUB
_dDKC
_dAU@
_dOCLCQ
_dM8D
_dOCLCQ
_dAJS
_dUIU
_dOCLCO
_dQGK
_dOCLCQ
_dOCLCO
_dINARC
066 _c(Q
019 _a961582016
_a962702199
_a992890386
_a1055401436
_a1066509031
_a1228574172
_a1241872842
_a1259188956
_a1412549386
020 _a9781400865185
_q(electronic bk.)
020 _a1400865182
_q(electronic bk.)
020 _z9780691002583
020 _a0691002576
020 _a9780691002576
020 _a0691002584
020 _a9780691002583
024 7 _a10.1515/9781400865185
_2doi
035 _a818439
_b(N$T)
035 _a(OCoLC)887499708
_z(OCoLC)961582016
_z(OCoLC)962702199
_z(OCoLC)992890386
_z(OCoLC)1055401436
_z(OCoLC)1066509031
_z(OCoLC)1228574172
_z(OCoLC)1241872842
_z(OCoLC)1259188956
_z(OCoLC)1412549386
037 _a22573/ctt7680c7
_bJSTOR
050 4 _aQA614.58
_b.G73 1998eb
072 7 _aMAT
_x012000
_2bisacsh
072 7 _aMAT040000
_2bisacsh
072 7 _aMAT012040
_2bisacsh
082 0 4 _a516.362
_223
049 _aMAIN
100 1 _aGraczyk, Jacek.
_9755086
245 1 4 _aThe real Fatou conjecture /
_cby Jacek Graczyk and Grzegorz Świa̧tek.
260 _aPrinceton, N.J. :
_bPrinceton University Press,
_c1998.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aAnnals of mathematics studies ;
_vnumber144
504 _aIncludes bibliographical references and index.
520 _aIn 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students
588 0 _aPrint version record.
505 0 0 _tFrontmatter --
_tContents --
_tChapter 1. Review of Concepts --
_tChapter 2. Quasiconformal Gluing --
_tChapter 3. Polynomial-Like Property --
_tChapter 4. Linear Growth of Moduli --
_tChapter 5. Quasi conformal Techniques --
_tBibliography --
_tIndex.
546 _aIn English.
590 _aAdded to collection customer.56279.3
650 0 _aGeodesics (Mathematics)
_978738
650 0 _aMappings (Mathematics)
_912840
650 0 _aPolynomials.
_94540
650 4 _aMathematik.
_93445
650 6 _aGéodésiques (Mathématiques)
_9969846
650 6 _aApplications (Mathématiques)
_912842
650 6 _aPolynômes.
_971113
650 7 _aMATHEMATICS
_xGeometry
_xGeneral.
_2bisacsh
_918134
650 7 _aMATHEMATICS
_xComplex Analysis.
_2bisacsh
_9112173
650 7 _aGeodesics (Mathematics)
_2fast
_978738
650 7 _aMappings (Mathematics)
_2fast
_912840
650 7 _aPolynomials
_2fast
_94540
653 _aAbsolute value.
653 _aAffine transformation.
653 _aAlgebraic function.
653 _aAnalytic continuation.
653 _aAnalytic function.
653 _aArithmetic.
653 _aAutomorphism.
653 _aBig O notation.
653 _aBounded set (topological vector space)
653 _aC0.
653 _aCalculation.
653 _aCanonical map.
653 _aChange of variables.
653 _aChebyshev polynomials.
653 _aCombinatorics.
653 _aCommutative property.
653 _aComplex number.
653 _aComplex plane.
653 _aComplex quadratic polynomial.
653 _aConformal map.
653 _aConjecture.
653 _aConjugacy class.
653 _aConjugate points.
653 _aConnected component (graph theory)
653 _aConnected space.
653 _aContinuous function.
653 _aCorollary.
653 _aCovering space.
653 _aCritical point (mathematics)
653 _aDense set.
653 _aDerivative.
653 _aDiffeomorphism.
653 _aDimension.
653 _aDisjoint sets.
653 _aDisjoint union.
653 _aDisk (mathematics)
653 _aEquicontinuity.
653 _aEstimation.
653 _aExistential quantification.
653 _aFibonacci.
653 _aFunctional equation.
653 _aFundamental domain.
653 _aGeneralization.
653 _aGreat-circle distance.
653 _aHausdorff distance.
653 _aHolomorphic function.
653 _aHomeomorphism.
653 _aHomotopy.
653 _aHyperbolic function.
653 _aImaginary number.
653 _aImplicit function theorem.
653 _aInjective function.
653 _aInteger.
653 _aIntermediate value theorem.
653 _aInterval (mathematics)
653 _aInverse function.
653 _aIrreducible polynomial.
653 _aIteration.
653 _aJordan curve theorem.
653 _aJulia set.
653 _aLimit of a sequence.
653 _aLinear map.
653 _aLocal diffeomorphism.
653 _aMathematical induction.
653 _aMathematical proof.
653 _aMaxima and minima.
653 _aMeromorphic function.
653 _aModuli (physics)
653 _aMonomial.
653 _aMonotonic function.
653 _aNatural number.
653 _aNeighbourhood (mathematics)
653 _aOpen set.
653 _aParameter.
653 _aPeriodic function.
653 _aPeriodic point.
653 _aPhase space.
653 _aPoint at infinity.
653 _aPolynomial.
653 _aProjection (mathematics)
653 _aQuadratic function.
653 _aQuadratic.
653 _aQuasiconformal mapping.
653 _aRenormalization.
653 _aRiemann sphere.
653 _aRiemann surface.
653 _aSchwarzian derivative.
653 _aScientific notation.
653 _aSubsequence.
653 _aTheorem.
653 _aTheory.
653 _aTopological conjugacy.
653 _aTopological entropy.
653 _aTopology.
653 _aUnion (set theory)
653 _aUnit circle.
653 _aUnit disk.
653 _aUpper and lower bounds.
653 _aUpper half-plane.
653 _aZ0.
700 1 _aŚwia̧tek, Grzegorz,
_d1964-
_eauthor.
_9755087
776 0 8 _iPrint version:
_aGraczyk, Jacek.
_tReal Fatou conjecture.
_dPrinceton, N.J. : Princeton University Press, 1998
_z9780691002576
830 0 _aAnnals of mathematics studies ;
_vno. 144.
_9220295
856 4 0 _3EBSCOhost
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818439
880 1 4 _6245-00/(Q
_aThe real Fatou conjecture /
_cby Jacek Graczyk and Grzegorz ́Swi©ѕtek.
938 _aYBP Library Services
_bYANK
_n12033124
938 _aProQuest MyiLibrary Digital eBook Collection
_bIDEB
_ncis28840351
938 _aEBSCOhost
_bEBSC
_n818439
938 _aebrary
_bEBRY
_nebr10907682
938 _aProQuest Ebook Central
_bEBLB
_nEBL1756204
938 _aDe Gruyter
_bDEGR
_n9781400865185
938 _aInternet Archive
_bINAR
_nrealfatouconject0000grac
994 _a92
_bN$T
999 _c703777
_d703777