000 05725cam a2200673 a 4500
001 ocn852150965
003 OCoLC
005 20241010112205.0
006 m d
007 cr cnu---unuuu
008 130708s2013 nju ob 000 0 eng d
010 _z 2013012700
040 _aN$T
_beng
_epn
_cN$T
_dOCLCO
_dYDXCP
_dDEBSZ
_dOCLCA
_dE7B
_dCDX
_dOCLCQ
_dOCLCO
_dGGVRL
_dNKT
_dLOA
_dOCLCF
_dOCLCQ
_dTOA
_dAGLDB
_dMOR
_dCCO
_dPIFAG
_dOCLCQ
_dUUM
_dOCL
_dJBG
_dSTF
_dWRM
_dVTS
_dNRAMU
_dOCLCQ
_dAU@
_dUKAHL
_dOCLCQ
_dUKCRE
_dOCLCQ
_dOCLCO
_dOCLCQ
_dQGK
_dOCLCO
019 _a960205435
_a961540598
_a962679427
_a988437536
_a991953643
_a1037704474
_a1038695202
_a1045470998
_a1153526817
_a1259157473
020 _a9789814513012
_q(electronic bk.)
020 _a9814513016
_q(electronic bk.)
020 _z9789814513005
020 _z9814513008
035 _a605588
_b(N$T)
035 _a(OCoLC)852150965
_z(OCoLC)960205435
_z(OCoLC)961540598
_z(OCoLC)962679427
_z(OCoLC)988437536
_z(OCoLC)991953643
_z(OCoLC)1037704474
_z(OCoLC)1038695202
_z(OCoLC)1045470998
_z(OCoLC)1153526817
_z(OCoLC)1259157473
050 4 _aTA343
_b.S76 2013eb
072 7 _aSCI
_x064000
_2bisacsh
072 7 _aTEC
_x029000
_2bisacsh
082 0 4 _a003/.83
_223
049 _aMAIN
245 0 0 _aStochastic Simulation Optimization for Discrete Event Systems :
_bPerturbation Analysis, Ordinal Optimization, and Beyond /
_cedited by Chun-Hung Chen (George Mason University, USA), Qing-Shan Jia (Tsinghua University, China) & Loo Hay Lee (National University of Singapore, Singapore).
260 _a[Hackensack] New Jersey :
_bWorld Scientific,
_c2013.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
520 _a"Discrete event systems (DES) have become pervasive in our daily life. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling of these stochastic simulations has long been a "hard nut to crack". The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y.C. Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions. Contents: Part I: Perturbation Analysis: IPA Calculus for Hybrid Systems; Smoothed Perturbation Analysis: A Retrospective and Prospective Look; Perturbation Analysis and Variance Reduction in Monte Carlo Simulation; Adjoints and Averaging; Infinitesimal Perturbation Analysis in On-Line Optimization; Simulation-based Optimization of Failure-Prone Continuous Flow Lines; Perturbation Analysis, Dynamic Programming, and Beyond; Part II: Ordinal Optimization : Fundamentals of Ordinal Optimization; Optimal Computing Budget Allocation; Nested Partitions; Applications of Ordinal Optimization. Readership: Professionals in industrial and systems engineering, graduate reference for probability & statistics, stochastic analysis and general computer science, and research."--
_cProvided by publisher
588 0 _aPrint version record.
504 _aIncludes bibliographical references.
505 0 _aChapter 1. The IPA calculus for hybrid systems -- chapter 2. Smoothed perturbation analysis : a retrospective and prospective look -- chapter 3. Perturbation analysis and variance reduction in Monte Carlo simulation -- chapter 4. Adjoints and averaging -- chapter 5. Infinitesimal perturbation analysis and optimization algorithms -- chapter 6. Simulation-based optimization of failure-prone continuous flow lines -- chapter 7. Perturbation analysis, dynamic programming, and beyond -- chapter 8. Fundamentals of ordinal optimization -- chapter 9. Optimal computing budget allocation framework -- chapter 10. Nested partitions -- chapter 11. Applications of ordinal optimization.
546 _aEnglish.
590 _aAdded to collection customer.56279.3
650 0 _aDiscrete-time systems
_xMathematical models.
_9599165
650 0 _aPerturbation (Mathematics)
_94301
650 0 _aSystems engineering
_xComputer simulaton.
_9697033
650 6 _aSystèmes échantillonnés
_xModèles mathématiques.
_91074825
650 6 _aPerturbation (Mathématiques)
650 7 _aSCIENCE
_xSystem Theory.
_2bisacsh
_923421
650 7 _aTECHNOLOGY & ENGINEERING
_xOperations Research.
_2bisacsh
_928722
650 7 _aDiscrete-time systems
_xMathematical models
_2fast
_9599165
650 7 _aPerturbation (Mathematics)
_2fast
_94301
700 1 _aChen, Chun-Hung,
_d1964-
_eeditor.
_9697034
700 1 _aJia, Qing-Shan,
_d1980-
_eeditor.
_9697035
700 1 _aLee, Loo Hay,
_eeditor.
_9587515
776 0 8 _iPrint version:
_tStochastic simulation optimization for discrete event systems.
_d[Hackensack] New Jersey : World Scientific, 2013
_z9789814513005
_w(DLC) 2013012700
_w(OCoLC)842879862
856 4 0 _3EBSCOhost
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=605588
938 _aAskews and Holts Library Services
_bASKH
_nAH25565509
938 _aCoutts Information Services
_bCOUT
_n25794273
938 _aebrary
_bEBRY
_nebr10731547
938 _aEBSCOhost
_bEBSC
_n605588
938 _aCengage Learning
_bGVRL
_nGVRL8RHC
938 _aYBP Library Services
_bYANK
_n10837855
994 _a92
_bN$T
999 _c756824
_d756824