| 000 | 05725cam a2200673 a 4500 | ||
|---|---|---|---|
| 001 | ocn852150965 | ||
| 003 | OCoLC | ||
| 005 | 20241010112205.0 | ||
| 006 | m d | ||
| 007 | cr cnu---unuuu | ||
| 008 | 130708s2013 nju ob 000 0 eng d | ||
| 010 | _z 2013012700 | ||
| 040 |
_aN$T _beng _epn _cN$T _dOCLCO _dYDXCP _dDEBSZ _dOCLCA _dE7B _dCDX _dOCLCQ _dOCLCO _dGGVRL _dNKT _dLOA _dOCLCF _dOCLCQ _dTOA _dAGLDB _dMOR _dCCO _dPIFAG _dOCLCQ _dUUM _dOCL _dJBG _dSTF _dWRM _dVTS _dNRAMU _dOCLCQ _dAU@ _dUKAHL _dOCLCQ _dUKCRE _dOCLCQ _dOCLCO _dOCLCQ _dQGK _dOCLCO |
||
| 019 |
_a960205435 _a961540598 _a962679427 _a988437536 _a991953643 _a1037704474 _a1038695202 _a1045470998 _a1153526817 _a1259157473 |
||
| 020 |
_a9789814513012 _q(electronic bk.) |
||
| 020 |
_a9814513016 _q(electronic bk.) |
||
| 020 | _z9789814513005 | ||
| 020 | _z9814513008 | ||
| 035 |
_a605588 _b(N$T) |
||
| 035 |
_a(OCoLC)852150965 _z(OCoLC)960205435 _z(OCoLC)961540598 _z(OCoLC)962679427 _z(OCoLC)988437536 _z(OCoLC)991953643 _z(OCoLC)1037704474 _z(OCoLC)1038695202 _z(OCoLC)1045470998 _z(OCoLC)1153526817 _z(OCoLC)1259157473 |
||
| 050 | 4 |
_aTA343 _b.S76 2013eb |
|
| 072 | 7 |
_aSCI _x064000 _2bisacsh |
|
| 072 | 7 |
_aTEC _x029000 _2bisacsh |
|
| 082 | 0 | 4 |
_a003/.83 _223 |
| 049 | _aMAIN | ||
| 245 | 0 | 0 |
_aStochastic Simulation Optimization for Discrete Event Systems : _bPerturbation Analysis, Ordinal Optimization, and Beyond / _cedited by Chun-Hung Chen (George Mason University, USA), Qing-Shan Jia (Tsinghua University, China) & Loo Hay Lee (National University of Singapore, Singapore). |
| 260 |
_a[Hackensack] New Jersey : _bWorld Scientific, _c2013. |
||
| 300 | _a1 online resource | ||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 520 |
_a"Discrete event systems (DES) have become pervasive in our daily life. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling of these stochastic simulations has long been a "hard nut to crack". The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y.C. Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions. Contents: Part I: Perturbation Analysis: IPA Calculus for Hybrid Systems; Smoothed Perturbation Analysis: A Retrospective and Prospective Look; Perturbation Analysis and Variance Reduction in Monte Carlo Simulation; Adjoints and Averaging; Infinitesimal Perturbation Analysis in On-Line Optimization; Simulation-based Optimization of Failure-Prone Continuous Flow Lines; Perturbation Analysis, Dynamic Programming, and Beyond; Part II: Ordinal Optimization : Fundamentals of Ordinal Optimization; Optimal Computing Budget Allocation; Nested Partitions; Applications of Ordinal Optimization. Readership: Professionals in industrial and systems engineering, graduate reference for probability & statistics, stochastic analysis and general computer science, and research."-- _cProvided by publisher |
||
| 588 | 0 | _aPrint version record. | |
| 504 | _aIncludes bibliographical references. | ||
| 505 | 0 | _aChapter 1. The IPA calculus for hybrid systems -- chapter 2. Smoothed perturbation analysis : a retrospective and prospective look -- chapter 3. Perturbation analysis and variance reduction in Monte Carlo simulation -- chapter 4. Adjoints and averaging -- chapter 5. Infinitesimal perturbation analysis and optimization algorithms -- chapter 6. Simulation-based optimization of failure-prone continuous flow lines -- chapter 7. Perturbation analysis, dynamic programming, and beyond -- chapter 8. Fundamentals of ordinal optimization -- chapter 9. Optimal computing budget allocation framework -- chapter 10. Nested partitions -- chapter 11. Applications of ordinal optimization. | |
| 546 | _aEnglish. | ||
| 590 | _aAdded to collection customer.56279.3 | ||
| 650 | 0 |
_aDiscrete-time systems _xMathematical models. _9599165 |
|
| 650 | 0 |
_aPerturbation (Mathematics) _94301 |
|
| 650 | 0 |
_aSystems engineering _xComputer simulaton. _9697033 |
|
| 650 | 6 |
_aSystèmes échantillonnés _xModèles mathématiques. _91074825 |
|
| 650 | 6 | _aPerturbation (Mathématiques) | |
| 650 | 7 |
_aSCIENCE _xSystem Theory. _2bisacsh _923421 |
|
| 650 | 7 |
_aTECHNOLOGY & ENGINEERING _xOperations Research. _2bisacsh _928722 |
|
| 650 | 7 |
_aDiscrete-time systems _xMathematical models _2fast _9599165 |
|
| 650 | 7 |
_aPerturbation (Mathematics) _2fast _94301 |
|
| 700 | 1 |
_aChen, Chun-Hung, _d1964- _eeditor. _9697034 |
|
| 700 | 1 |
_aJia, Qing-Shan, _d1980- _eeditor. _9697035 |
|
| 700 | 1 |
_aLee, Loo Hay, _eeditor. _9587515 |
|
| 776 | 0 | 8 |
_iPrint version: _tStochastic simulation optimization for discrete event systems. _d[Hackensack] New Jersey : World Scientific, 2013 _z9789814513005 _w(DLC) 2013012700 _w(OCoLC)842879862 |
| 856 | 4 | 0 |
_3EBSCOhost _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=605588 |
| 938 |
_aAskews and Holts Library Services _bASKH _nAH25565509 |
||
| 938 |
_aCoutts Information Services _bCOUT _n25794273 |
||
| 938 |
_aebrary _bEBRY _nebr10731547 |
||
| 938 |
_aEBSCOhost _bEBSC _n605588 |
||
| 938 |
_aCengage Learning _bGVRL _nGVRL8RHC |
||
| 938 |
_aYBP Library Services _bYANK _n10837855 |
||
| 994 |
_a92 _bN$T |
||
| 999 |
_c756824 _d756824 |
||